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Abstract

In 2006 California implemented the Armed and Prohibited Persons System (APPS), a mon-
itoring program that identifies known firearm owners who become prohibited from owning a
firearm, and then subsequently attempts to retrieve all prohibited weapons from such individu-
als. Our goal is to assess the effect of APPS on California murder rates using annual crime data
from both California and comparison states. To do so, we adapt a non-parametric Bayesian
approach, multitask Gaussian Processes (MTGPs), which allows for a flexible and parsimonious
panel data model that nests many existing approaches and allows for direct control over both
dependence across time and dependence across units, as well as natural uncertainty quantifi-
cation. We extend this approach to incorporate non-Normal outcomes, auxiliary covariates,
and multiple outcome series, which are all important in our application. We also show that
this approach has attractive Frequentist properties, including a representation as a weighting
estimator with separate weights over units and time periods. Applying this approach, we find
large effects of the APPS program on gun-related homicides.
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1 Introduction

Every year, thousands of people in the United States are murdered with a firearm. In 2017 alone,
nearly 40,000 people in the U.S. died from a gun-related injury, including deaths by suicide and
murder (Gramlich, 2019). Addressing gun violence remains one of the most pressing public safety
issues in the United States.

In 2006 California introduced an innovative program designed to curb gun violence, known as
the Armed and Prohibited Persons System (APPS). This monitoring program identifies known
firearm owners who become prohibited from owning a firearm and then subsequently attempts to
retrieve all prohibited weapons. Through this program, state law enforcement has made hundreds
of thousands of contacts with prohibited individuals and has removed tens of thousands of firearms
from their possession, often permanently. See Ben-Michael et al. (2021) for detailed discussion.

Our goal is to estimate the impact of APPS on the number of murders in California using
annual, state-level data. Unfortunately, simple approaches are unlikely to perform well here; for
example, the assumptions underlying the workhorse “difference-in-differences” regression approach
do not hold in this application. In one recent analysis, Ben-Michael et al. (2021) instead consider
a variant of the synthetic control method (Abadie et al., 2010). This approach, however, fails to
address many important features of the problem, such as multiple outcome series, and does not
lead to convincing uncertainty quantification in this case.

In this paper, we adapt a non-parametric Bayesian approach, multitask Gaussian Processes
(MTGPs), to estimate the causal effect of APPS. Originally developed for the setting with multiple
outcomes rather than multiple units (Bonilla et al., 2008; Alvarez, 2017), Multitask GPs separately
parameterize dependence across time and dependence across units. This allows for a flexible and
parsimonious panel data model that nests many existing approaches: Our primary model is a nat-
ural generalization of low-rank factor models commonly used in panel data settings (e.g., Xu, 2017;
Athey et al., 2021) with an additional prior that encourages smoothness in the underlying factors.
We also take advantage of the large literature on the statistical and computational properties of
Gaussian Processes (Williams and Rasmussen, 2006; Gelman et al., 2013) to extend this model.
Immediate extensions include: allowing for a count (Poisson) observational model; allowing for
multiple outcome series; incorporating a mean model; and incorporating auxiliary covariates.

This flexibility, however, also comes with a cost. In settings such as ours, with relatively few
units and (pre-treatment) time periods, estimates can be especially sensitive to the prior distribu-
tions. Thus, careful model checking is an important feature of the proposed workflow. In particular,
we re-frame many standard panel data diagnostics in terms of standard Bayesian workflows, such
as posterior predictive checks. This avoids many of the issues with, e.g., inflated Type I error due
to pre-testing for parallel trends (Roth, 2019).

In addition to diagnostics, the Bayesian approach also yields coherent uncertainty quantification,

appropriately propagating uncertainty from the different sources of information in the model. In



particular, the specific model we consider automatically produces uncertainty intervals that grow
over time post-treatment. Surprisingly, this last point is a departure from many existing approaches,
which sometimes have constant uncertainty intervals post-treatment. We also report many flexible
summaries of the posterior distribution, allowing us to obtain posterior distributions for estimands
like the benefit-cost ratio, a key quantity in policy analysis.

Finally, we adapt results from Kanagawa et al. (2018) showing that the Gaussian Process can
be represented as a weighting estimator. We then use this representation to show that the overall
weights decompose into separate unit and time weights. As a result, the proposed MTGP approach
has the form of a doubly-weighted average over units and time periods, similar to recent proposals
in the panel data literature (Arkhangelsky et al., 2019; Ben-Michael et al., 2021a).

Applying these ideas to the impact of APPS yields large, negative effect estimates on gun-related
homicides in California. Our preferred Poisson model estimates an impact of several hundred
prevented homicides per year, suggesting very large benefits from this program. In contrast, using
the same methodology, we estimate that there is effectively no impact of APPS on non-gun-related
homicides, as expected.

As we discuss in Section 2.3, our proposed approach combines the growing literature on Gaussian
Processes for causal inference (see Oganisian and Roy, 2020) with the robust literature on estimating
causal effects for a single treated unit with panel data (see Samartsidis et al., 2019). Of particular
relevance are Modi and Seljak (2019) and Carlson (2020), who also consider GPs in this context,
albeit with different structures. More broadly, our proposed framework is a natural (Bayesian)
generalization of recent proposals for low-rank factor models with panel data (e.g., Xu, 2017; Athey
et al., 2021); see also recent extensions from Pang et al. (2020).

Our paper proceeds as follows. In Section 1.1 we give a brief overview of the APPS program
and other institutional details. In Section 2 we describe the underlying causal problem and review
related work. In Section 3 we review single- and multi-task Gaussian Processes and apply these
ideas to our application setting. In Section 4 we represent the MTGP approach as a weighting
estimator. In Section 5 we report model diagnostics and the estimated impact of APPS under
different models. Finally, in Section 6 we discuss open questions and possible extensions. The

Appendix includes additional computational details, diagnostics, and results.

1.1 Armed and Prohibited Persons System

The Armed and Prohibited Persons System is a law enforcement program that proactively removes
firearms from known gun owners who become prohibited from owning a gun. We provide a brief
overview here; see Ben-Michael et al. (2021) for further details. The program has two parts: a state-
wide database and an enforcement operation. While the state has maintained the APPS database
since the mid 1990s, the enforcement operation did not begin until December 2006 (California
Department of Justice, 2015).
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Figure 1: Homicide rate per 100,000 people in California and the rest of the United States. The
dotted line is 2006, the year the APPS program was launched.

First, the APPS database lists all known gunowners in the State of California, building on
sales records and voluntary gun registrations. The known population of gunowners in the APPS
database has grown substantially over time, from under 900,000 in 2006 to over 2.5 million in 2019,
or roughly 6 percent of the state’s resident population. This database is cross-referenced daily
against other statewide databases that record events that trigger a firearm prohibition, including
the state’s criminal history system, mental health reporting system, restraining and protective order
system, and a wanted persons system. When the cross-reference uncovers a triggering event for
an individual in APPS, the case is analyzed by state criminal intelligence specialists to determine
whether the person is actually prohibited. If the person is deemed prohibited, the APPS database
notes a change in status from a lawful to a prohibited gun owner and the case is referred to the
state Bureau of Firearms (BOF) for an enforcement action. Among the 2.5 million individuals in
the APPS database in early 2019, approximately 23,000 were armed and prohibited with cases at
various stages of investigation (California Department of Justice, 2019).

Using the APPS database, a group of analysts and state law enforcement officers then directly
enforce state firearm restrictions for gun owners who become prohibited. Typically, these officers
attempt to contact the individual at their last known address and request to perform a consensual
search of the premises. If refused, officers will return with a search warrant. Often, officers only
recover some of the firearms associated with the individual in question — but frequently discover
unregistered weapons along with the registered firearms. Following the firearm seizures, the in-
dividuals are then removed from the APPS database. Between 2007 and 2017, the BOF directly

retrieved nearly 32,000 firearms from prohibited individuals. Interviews with BOF officials suggest



that law enforcement officers at the county and local levels retrieved substantially more firearms
related to APPS seizures during this period, though exact numbers are not available.

Figure 1 shows the homicide rate per 100,000 people in California versus the rest of the United
States (with state-level estimates weighted by population); the dotted line indicates 2006, the year
the APPS program was first launched (in December). The figure shows several striking patterns.
First, the overall murder rate in the United States declined over this period, with a large increase
in the final years of the panel. Second, the murder rate in California was substantially higher than
the national average in the late 1990s and mid 2000s, but eventually converged to the rest of the
country by the mid 2010s.

The methodological question is whether and how we can use this panel data structure to estimate
the impact of APPS on the murder rate. Furthermore, we would like to separate out the effect
on gun related and non-gun related homicides. The APPS program should primarily impact gun-
related homicides by removing firearms from a high-risk population, though substitution effects
may lead to changes in non-gun-related homicides. Therefore our methodological goal also includes
estimating effects on multiple outcomes simultaneously.

Unfortunately, relatively simple approaches are unlikely to perform well here. For example, the
workhorse “difference-in-differences” regression model assumes parallel trends: in the absence of
the intervention, the differences between the murder rates in California and the rest of the country
are constant over time. This is clearly violated in Figure 1, with much wider differences in the mid
2000s than in the late 1990s.

In a recent paper, Ben-Michael et al. (2021) instead consider a variant of the synthetic control
method (SCM) to estimate this effect, constructing a weighted average of other states (“synthetic
control”), which closely matches California’s pre-treatment murder rate. Ben-Michael et al. (2021)
then compare the observed murder rate in California to that in “synthetic California,” finding a
reduction of around 0.8 homicides per 100,000 people, roughly 10 percent below pre-intervention
baseline.

While a promising initial analysis, several open questions remain. First, the estimated SCM
weights on control units are sensitive to modeling choices (even if the overall SCM estimate is rela-
tively stable), with little guidance on how to choose among them. Second, Ben-Michael et al. (2021)
propose a preliminary SCM analysis using multiple outcomes series: gun-related, non-gun-related,
and overall homicide rates. However, the methodology for panel data with multiple outcomes is
under-developed, and it is unclear how the approach used in Ben-Michael et al. (2021) can be ap-
plied more generally. Relatedly, the number of homicides per state are inherently count outcomes,
a fact ignored in existing SCM analyses. Finally, quantifying uncertainty with synthetic controls is
challenging. Ben-Michael et al. (2021) consider both placebo and conformal inference approaches
(Abadie et al., 2010; Chernozhukov et al., 2021), which rest on versions of exchangeability either

over units or over time. These assumptions are difficult to justify in our setting. Moreover, the



uncertainty intervals from the conformal inference approach are constant over time even though,
intuitively, we anticipate far greater uncertainty for the counterfactual murder rate in 2017 than
immediately after the implementation of APPS in 2007. These concerns motivate our alternative

approach, which we turn to next.

2 Setup and Background

2.1 Problem setup

We now describe the standard panel data setting with ¢ = 1,..., N units observed fort =1,...,T
time periods. In our application, we observe N = 50 states for T' = 20 years. Let W; be an indicator
that unit ¢ is treated at time Ty < T where units with W; = 0 never receive the treatment. While our
setup is more general, we restrict our attention to the case where a single unit receives treatment,
and follow the convention that this is the first one, W7 = 1. The remaining Ng = N — 1 units
are untreated. In our application, the treatment of interest is the APPS program, treated at time
Ty = 10; California is the treated unit and the remaining states are possible controls.

We describe our problem of interest in the potential outcomes framework. We assume no
interference between units and stable treatment, which allows us to write the potential outcomes
for unit i in time ¢ under control and treatment as Yj;(0) and Y;;(1) respectively.! Our primary
outcome of interest is the overall murder rate; we consider multiple outcomes in Section 3.3.3. For
ease of exposition, we initially ignore the presence of background covariates from our analyses; we
discuss extensions to incorporate them in Section 3.3.1.

Since the first unit is treated at time 7}, the observed outcomes Yj; are therefore:

v Yi(0) ifW;=0ort<Ty
T ve() #W;=1landt>Tp

The goal is to estimate the causal effect for the treated unit at each post-treatment time ¢ > Tp,

7t = Y11 (1) — Y1:(0) = Y14 — Y14(0), as well as the average treatment effect after time Tj,

1 T
T = T—TO Z Tt
t=Top+1

Since we observe the treated outcome Yy, = Y74(1) for the treated unit at ¢ > Ty, the challenge is
to impute the missing potential outcome for the treated unit at time ¢ > Ty. Note that we adopt
a finite sample causal inference framework here: our goal is to estimate the impact for California,

rather than for a hypothetical population (see Imbens and Rubin, 2015).

"While this is not always the case, in our application, it is reasonable to assume that any state could launch an
APPS-style program at any point. Thus, both potential outcomes could reasonably exist for all units and all time
periods.



2.2 Bayesian causal inference

We adopt a Bayesian approach to estimating causal quantities. There are many subtle issues that
arise in Bayesian causal inference that are not central to our discussion. For instance, identification
in the Bayesian approach is conceptually distinct from identification in non-Bayesian causal infer-
ence: if the prior distribution is proper then the posterior distribution will also be proper, regardless
of whether the parameters in the likelihood are fully or partially identified (see Gustafson, 2010;
Imbens and Rubin, 2015). See Ding and Li (2018) and Oganisian and Roy (2020) for additional
background. Pang et al. (2020) and Menchetti and Bojinov (2020) give overviews of Bayesian causal
inference for panel or time series data.

At a high level, Bayesian causal inference views missing potential outcomes as unobserved ran-
dom variables to be imputed (Rubin, 1978; Ding and Li, 2018). We therefore break the problem
into two parts: first, estimate a Bayesian model using the observed data; second, use this model to
obtain the posterior (predictive) distribution for the missing potential outcomes. Specifically, let
ymis — {Yit(0) }ic1 051, € R70 be the missing potential outcomes for the treated unit after T, and
let O°" = ({Y;4(0)}i>1, {Yit(0) biz1 <y, {Yae(1) }iz=1457, W) be the set of observed data, includ-
ing all control outcomes, the treated unit’s pre-treatment outcomes, the treated unit’s observed
outcomes post-treatment, and the set of treatment assignments. We introduce auxiliary covariates
in Section 3.3.1.

The goal is to impute the missing potential outcomes, Y™, by drawing from the posterior
predictive distribution, P(Y™#|0, O°*), governed by a model parameter #. We can then estimate
73 = Y1, — Y73(0) at post-treatment time ¢t > Tp, where Y75(0) is a draw from the posterior predictive
distribution for Y74(0) for unit 1 at time ¢. To do so, we follow Richardson et al. (2011) and use
the fact that:

]P){Ymi579 ’ Oobs} _ ]P’{H ‘ Oobs} . ]P){Ymis | 07 Oobs}7

where P{Y™ §|O°P} is the posterior distribution of our model parameters and the missing po-
tential outcomes given observed data. Now, to obtain the target posterior predictive distribution,
we first specify a prior distribution P() and use Bayes rule to obtain the posterior distribution
P(A|O°"%). With this posterior over the model parameters, we can repeatedly draw samples of
Y™ yielding the joint posterior on the left-hand side of the above expression. Obtaining the
target posterior predictive distribution is then a matter of rearranging the above expression to
isolate P(Y™5|9, O°P%). Intuitively, this approach rests entirely on the form of the model and the
estimated model parameters. See Pang et al. (2020) for an alternative framing that explicitly states
sufficient conditions in the form of identifying assumptions.

Formally, we assume that units and time periods are exchangeable conditional on the model

parameters 6, which have a prior distribution p(6). Following Richardson et al. (2011), we partition



the parameter space into 8, which governs the marginal potential outcome distribution, and 6¢,
which governs the association between Y;;(0) and Yj;(1). In principle, we could treat 6% as a
sensitivity parameter; for the purposes of this paper, we assume that the potential outcomes are
conditionally independent given data and model parameters, allowing us to ignore . The posterior

for 8™ is then:

P{6™ | O} o p(6) [ P(¥ir(0) | 6™, Way),
(i,t)eC

where C denotes the “control” unit and time periods: t = 1,...,Tp for i = 1 and t = 1,...,T
for other units. Let Y75(0) denote the posterior predictive distribution over the missing potential
outcomes, Y75(0) = P{Y™" | §, 0°"}. The estimated treatment effect at time ¢ is then the observed
treated potential outcome minus the predicted missing potential outcome at post-treatment time
t > Tp, 7t = Y1: — Y{5(0), where repeatedly drawing Y75(0) from the posterior predictive distribution
propagates the uncertainty.

A key consequence of this setup is that we never use post-treatment data from the treated unit
in our modeling (or, equivalently, we have an arbitrarily flexible model for the observed treated
data). Rather, our focus is on modeling the observed control potential outcomes. And by imputing
Y;(0) from the posterior predictive distribution, our inference is inherently finite sample, allowing
us to directly reason about the effect of APPS on California’s murder rate (Imbens and Rubin,
2015).

Finally, while the setup here is quite general, in practice we restrict ourselves to a structure

where the control potential outcomes are a model component plus additive noise.

Assumption 1 (Additive, separable error structure). The control potential outcomes, Y;;(0), are

generated as:
Yi:(0) = model;(0) + ei Eleg] =0

where model;;(6) is the outcome model for unit ¢ at time ¢, governed by parameters 6; and &;; is

mean-zero noise.

This assumption, sometimes referred to strict exogeneity in the panel data setting (see, e.g.,
Imai and Kim, 2019), places no restrictions on the model terms and #. This allows for non-
parametric modelling of the outcomes where 6 is potentially infinitely dimensional — but does
not allow the errors to depend on treatment assignment. In other words, given the model and the
possibly infinitely many parameters 6, the error distribution for the treated unit’s (control) potential
outcomes are exchangeable with other units’ errors. As we discuss in Section 6, we can relax this
restriction within the fully Bayesian workflow, for instance, via sensitivity analysis (Franks et al.,
2019).



2.3 Related work

Our paper bridges several robust literatures. First, we build on the many existing methods for
estimating causal effects for a single treated unit with panel data; see Samartsidis et al. (2019) for
a recent review. Within this, there are several important threads. Most directly relevant are recent
papers on Bayesian implementations of (or alternatives to) the synthetic control method, including
(Tuomaala, 2019; Kim et al., 2020; Pang et al., 2020; Pinkney, 2021). There are also several recent
papers that directly estimate factor models for causal effects (e.g., Xu, 2017; Athey et al., 2021), as
well as approaches that directly address multiple outcomes (Samartsidis et al., 2020). Finally, in
an important addition, Brodersen et al. (2015) propose a Bayesian structural time series model for
estimating causal effects, focused on a single treated series; see Menchetti and Bojinov (2020) for
a recent extension. As we discuss below, we incorporate many of the novel ideas in these papers,
including many of the prior choices. However, our proposed MTGP framework is typically more
general, and, we believe, more conducive to estimating causal effects with panel data.

Next, there is a small but growing set of papers on the use of Gaussian Processes for estimating
causal effects. To date, nearly all of these papers have focused on the cross-sectional setting (Alaa
and van der Schaar, 2017; Schulam and Saria, 2017; Ray and van der Vaart, 2018; Huang et al.,
2019; Branson et al., 2019; Witty et al., 2020; Ren et al., 2021). See Oganisian and Roy (2020) for
a recent review.

We are aware of very few papers specifically using GPs to estimate causal effects in panel data
settings, although, as we discuss in Section 4, many existing estimators can be written as special
cases of this approach.? Two working papers are especially relevant for our work. The first is
recent work from Modi and Seljak (2019), who also propose a GP approach for estimating causal
effects in this setting. Their main proposal, however, is very different than ours, with a focus on
GP for the frequency domain. Thus, we view our model as a useful complement to theirs. A second
recent proposal is Carlson (2020), who also uses a GP approach but does not exploit the multitask
structure. Finally, while not explicitly causal, of particular relevance to our approach is Flaxman

et al. (2015), who propose a hierarchical GP model that is similar to what we discuss here.

3 Multitask Gaussian Processes for Causal Inference

We now give a high-level description of Multitask Gaussian Processes for causal effects with panel
data, beginning with the simpler setting of single-task GPs. We discuss specific model implemen-

tation choices in Appendix A.

2See also Karch et al. (2018), who use GPs for latent growth curve modeling in psychometrics, and Huang et al.
(2015), who instead focus on causal discovery.



3.1 Review: Single Task Gaussian Processes

We begin by reviewing the setup and properties of a Single-Task GP, which focuses solely on the
treated unit; see Williams and Rasmussen (2006) for a textbook discussion. While the original
GP setup is quite general, to fix ideas we initially focus on applying GPs to the interrupted time
series or horizontal regression setting, in which we use the pre-treatment outcomes for California
to forecast post-treatment outcomes in the absence of the intervention. Specifically, we initially
model the (control) murder rate for California at time ¢, Y74(0), as the sum of a model component

f1r and a mean-zero, independent noise component (as in Assumption 1):

Y14(0) = fir +eu
fl ~ gP(O, k(t7 t/))
E1t N(O, 0‘2)
where GP(-) is a Gaussian Process prior and f; = (fi1,..., fir) is the vector of model components

for the treated unit. The key idea is that the GP prior over f; incorporates smoothness over time

via a kernel function k(t,t’), where similar values of ¢ imply larger covariances. Here we use the

t—t'||?
Ktime(t, t') = exp <_”2p’) :

squared exponential kernel:

where p is the length scale.

The choice of kernel function plays an important role in defining the behavior of the model. For
the family of kernels we consider, the relation between the time difference |t — ¢'| and the kernel
value k(t,t') is central in determining how we expect the model to behave over time. If k(t,t')
is large even for far-apart time periods, then the model components fy;, fi are assumed to be
highly correlated, which corresponds to an assumption that the underlying model is very smooth
over time. Conversely, if k(¢,t') is low even for close time periods, then the model components are
assumed to be close to independent, which corresponds to assuming that the model varies strongly
over time. The length scale hyper-parameter p explicitly controls the level of smoothness in the
model components. Many other kernels are possible and appropriate for other settings, such as
periodic kernels; see Williams and Rasmussen (2006) for a textbook discussion.

To write the MTGP model in matrix notation, let Kijme € RTXT he the corresponding time
kernel matriz, where Kiime 111 = ktime(t,t’). Then, we can write f; ~ GP(0, k(t,t')) as:

£, ~ MVN(0, Ktime).

Because the model is a multivariate Normal, the conditional distributions have a convenient

form. Specifically, as in Section 2.2, we can partition the vector of control potential outcomes for

the treated unit into the observed and missing components: Y¢% = (Y2*5, Y55, .. .,YloTk;S), and



Y™ = (Yi7,11(0), Yi1y22(0), . .., Y17 (0)). Suppressing the superscript time to reduce clutter, we

can then partition this multivariate Normal model as:

Ymis 0 Kmis Kmis,obs
(YObS> ~ MVR (0)’ (K o Kope +02In /| M)
1 obs,mis obs To
where Kops € RT0XT0 ig the kernel matrix for observed points, Ky € RT-T0)x(T-T0) ig the

kernel matrix for unobserved points, and Kqpsmis € R70X(T=Tb) ig a rectangular matrix of kernel

evaluations for pre- and post-treatment times, whose ¢,¢’ element is the kernel value k(t, Ty + t').
We can then write the the posterior predictive distribution for California’s outcomes at future time

points, t > Tj, as:

VY5 o MVN(p, )
M= Kmis,obs(Kobs + UQH)_lY?bS (2)
Y= Kmis - Kmis,obs (Kobs + UQH)_IKobS,mis' (3)

As we discuss in Section 4, the posterior mean is a linear combination of the pre-treatment obser-

vations, Y$bs.

3.2 Multitask Gaussian Processes

We now turn to modeling the murder rate for all states jointly, rather than modeling California’s
outcome series alone. The primary change is that each observation is now a unit-time pair (4, t), so
the kernel measuring similarity between points is doubly-indexed: k( (i,t), (¢',¢') ). The multitask
GP framework, originally developed for the setting with a single unit but many outcomes (Goovaerts
et al., 1997; Bonilla et al., 2008), is a natural approach for capturing similarity across multiple
dimensions. As in the single-task GP setting and Assumption 1, we assume that the control

potential outcomes consist of a model component plus additive (Normal) noise:

Yite(0) = fir + €ir
e~ N(0,0%),

where we want to flexibly model f;;. While this framework is quite general, we focus on two common
simplifications: allowing for separable unit and time covariances, and imposing a low-rank structure

on the unit covariance.

Separable unit and time kernels. The first key idea is to decompose the GP kernel into

separate kernels that capture similarity across time (the “time covariance”) and similarity across

10



units (the “unit covariance”):
k( (Z7t)7 (ilvt/) ) = kunit(ia l/) X ktime(tvt/)a (4)

where kynit defines similarity between the N units and kiime defines similarity between the T' time
periods. This is a strong restriction that implies that the covariance across units, kynit, is constant
in time. (Conversely, this implies that the time covariance kiime is constant across units.) We

discuss some approaches for relaxing this restriction in Section 6.

Low-rank task covariance. Even with the separable kernel restriction, the resulting model is
overparameterized. In particular, the similarity between the T time points, ktime(t,t’), has a nat-
ural parameterization in terms of the difference in time, |t — ¢/|, which is a scalar. By contrast,
the similarity between the N units, kunit(7,4), involves (N — 1)? comparisons. Following Goovaerts
et al. (1997) and Bonilla et al. (2008), we therefore simplify the problem using the intrinsic core-
gionalization model (ICM), which imposes a low-rank assumption on the unit covariance kyyi; (see
also Flaxman et al., 2015, Section 4.2). While initially proposed in terms of restrictions on the
matrices, we can equivalently write the ICM model as an assumption that the outcome model
for each of the ¢ = 1,..., N, units is a unit-specific linear combination of J latent draws from a
Gaussian process, i.e., E
fit = Zﬁz‘jujt, (5)
j=1
where each latent u; is itself a GP with kernel ktime,® and where each unit has its own set of
unit-specific factor loadings 3; = (81, - .., Bis) with corresponding hyper-parameters, 3; ~ G(-).
Thus, the underlying model components uy, ..., uy are shared across units and induce a dependence
across them. The number of shared latent functions J corresponds to the rank of the unit kernel
matrix Kynit. This is a key hyper-parameter governing the overall complexity of the model; a
higher rank J will lead to a more flexible model that potentially has the risk of overfitting. We
discuss choosing the rank J via Bayesian model criticism in Section 5.1.

The resulting model is then:
Yit(0) = fir +cit
J
fit = Z ﬁijujt
j=1

u; ~ QP(O, ktime(ta t,)))

3We can similarly write this restriction as kunit(4,7') = (Bi, B«), i.e., a linear kernel between weights for units 4
and j over the J latent functions inferred from the data.

11



where e; ~ N(0,02). We estimate this model using the probabilistic programming language,
Stan (Stan Development Team, 2021); see Appendix A for hyperprior distributions and additional
implementation details.

As above, we can re-write this model in matrix notation. Define the unit covariance matrix
as Kunit € RV*N and the time covariance matrix as Kijme € RT*T. Then we can represent the

decomposition in Equation (4) as the Kronecker product between the two covariances:
K= Kunit ® Ktime € RNTXNTa

where any one entry of K* can be written as the product of the task and time covariance, as in
Equation (4).

We can similarly divide this (admittedly unwieldy) kernel matrix into a matrix for observed
unit-time pairs, Kops € RUDTHT0)x((n=1T+T0) -5 matrix for the unobserved counterfactual post-

(T=Tb) | and a rectangular matrix for the

treatment outcomes for the treated unit K, € R(Z—7T0)x
kernel between the outcomes for the observed unit-times and the post-treatment outcomes for the
treated unit Kops mis € R((=DT+T0)x(T=To)  With this setup, the joint distribution of the missing

post-treatment outcomes for the treated unit and the observed untreated outcomes are multivariate

Ymis 0 Kmis Kmis obs
~ MVN , ’ .
Yeobs 0 Kobs,mis Kobs + o?l

The resulting conditional mean and variance have the same form as in Equations (2) and (3).

Normal:

As we discuss in Section 4 below, there are two important special cases of this model, which
correspond to setting either the time or unit covariances to be the identity. Setting the time
covariance matrix to the identity, Kiime = Iz, corresponds to a model with no smoothness in
the underlying latent factors, u, allowing the function value to change arbitrarily between time
points. The resulting approach is a (Bayesian) linear factor model (e.g., Xu, 2017; Athey et al.,
2021; Samartsidis et al., 2020). In Section 4 below, we further connect this to “vertical regression,”
which finds a set of weights over units that optimize some imbalance criterion (Doudchenko and
Imbens, 2016). On the other hand, setting the unit covariance matrix to the identity, Kynit = In,
corresponds to a model in which there is no correlation in the underlying process for each unit,
and each model component is an independent GP. The model therefore reduces back to the single-
task GP discussed in Section 3.1 above. Finally, while we focus on the ICM model with separate
time and unit covariances, there is a large literature on more elaborate generalizations, such as the
semiparametric latent factor model and the linear model of coregionalization; see Alvarez (2017)

for a review.
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3.3 Extensions

Building on the broad GP literature, we can immediately extend the MTGP model above to better
match our application. We focus on three main extensions here: incorporating a mean model;

allowing for a non-Gaussian likelihood; and modeling multiple outcomes simultaneously.

3.3.1 Incorporating a mean model

Thus far, we have focused on mean-zero Gaussian Processes, Y;;(0) = fi; +€;;. We can extend this

to incorporate a mean model, m;:

Yie(0)=  ma  + fu + €t -
mean model MTGP  noise

A particularly natural model for the panel data setting is to set m;; to have unit- and time-specific

intercepts:

My = W4+ unit; 4+ timey
unit; ~ N(0,02,;)

unit

time ~ g'P(O, Kglobal)

where p is a global intercept, unit; are the unit-specific intercepts, and time; are the time-specific
intercepts. Here we place independent Normal priors on the unit-specific intercepts,* and a global
Gaussian Process prior on the time-specific intercepts.

The distinction between the mean function and the covariance matrix in the MTGP is somewhat
artificial, and is typically chosen for clarity and to facilitate the choice of prior (Kanagawa et al.,
2018). To see this, consider a simplified MTGP in which the mean model only includes unit-specific

intercepts, m;; = unit;. This is equivalent to a mean-zero MTGP with kernel function:
k( (Z) t)7 (ilu t/) ) = kdelta(iv /Ll) + kunit (7’7 /Ll) X ktime(t’ t/)a
where kqelts 1S the delta kernel:

.y 1 if =14
kdelta(z7 ? ) = .
0 otherwise

Including the unit-specific intercepts in the mean function, however, allows us to directly specify

reasonable priors and makes the role of these intercepts more transparent.

4With independent priors, these are often referred to as fized effects in the panel data literature. We could instead
model random effects using a hierarchical prior. See Hazlett and Wainstein (2020) for discussion.
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Finally, we can immediately extend the mean model to incorporate (time invariant) auxiliary
covariates, X; € RP:°

My = p -+ unit; + time; + ' X;,

where 7 is a vector of regression coefficients. As with the unit-specific intercepts, we could instead

include this as part of the GP kernel, for example by incorporating it into the unit covariance.

3.3.2 Non-Gaussian Likelihoods and heteroskedasticity

Another natural GP extension is to allow for non-Gaussian observation models, which is essential
for well calibrated uncertainty quantification. Analogous to using alternative link functions with
generalized linear models (Gelman et al., 2013, Ch. 21.3), we can model the control potential

outcomes as:
Vit (0) ~ g~ (fir),

where g~1(-) is an appropriate link function and f;; is the latent GP factor. As above, we could
also incorporate a mean model, Y;;(0) ~ g~ !(mi + fi). See Naish-Guzman and Holden (2008);
Hensman et al. (2015) for discussions of related computational issues.

We highlight two link functions here. First, the outcome in our application is the number of
murders, which is more naturally modeled via a Poisson (or, perhaps, Negative Binomial) link. A
Poisson model also captures the restriction that the variance in the murder rate increases with the
mean murder rate. We use this as our primary model below. Alternatively, we could allow for
a “robust” Gaussian Process by allowing for ¢-distributed rather than Normal errors; see Jylanki
et al. (2011). In our application, the estimates using t-distributed errors are nearly identical to
those using Normal errors.

Finally, an important practical feature of our application is that populations vary considerably
across states. Thus, we expect that the underlying variability in the murder rate will be much
larger in, say Vermont or Wyoming than in California or Texas. With a Gaussian likelihood, we

can parametrize this as:
2
o
Y; (0) ~N <fz't7 Nﬁ)

where Ny is the population for state ¢ at time t. We can similarly allow for a population offset
in a Poisson model.® Allowing for heteroskedasticity by size is an important departure from many

Frequentist panel data methods used in this setting; see Samartsidis et al. (2019).

SWith additional restrictions (e.g., “exogeneity”), we can extend this to include time-varying covariates as well.
See Imai and Kim (2019) for discussion.

SMore broadly, we could incorporate much more complex noise models, such as an additional GP on the noise
term (e.g., Naish-Guzman and Holden, 2008; Hensman et al., 2015). This is a challenging model to fit given our
limited sample size.
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3.3.3 Multiple outcomes

Finally, we can extend the MTGP approach to allow for multiple correlated outcomes, following
the large literature on multi-output GPs (Alvarez, 2017); see also Samartsidis et al. (2020) for a
non-GP setting. This is particularly important for our application because we are interested in
assessing the impact of APPS on both gun- and non-gun-related homicides.

To do so, we can write each data point as a unit-time-outcome triple, (i,t,7j), with control
potential outcome, Yj;;(0). While many models are possible, we focus on a simple version with a
shared factor structure across outcomes, which we can write as a multivariate Normal observation

model with common covariance across units and time:
Yi:(0) ~ MVN(fi, X).

Equivalently, we can write this as an MTGP where the resulting kernel decomposes into separate

unit, time, and outcome kernels:
k( (i7t7j)7 (i/?t,’j,) ) = kunlt(zﬂll) X ktlme(t7t/) X k;outcome(jaj,)'

Similarly, we can write this as a Kronecker structured overall kernel K = Kyt ® Ktime ® Koutcome,
as in Flaxman et al. (2015).

4 MTGP as a weighting estimator

Our discussion thus far has been entirely Bayesian. Gaussian Processes, however, are fundamentally
linked with (Frequentist) kernel ridge regression; a large literature exploits this connection to
describe the Frequentist property of GPs; see Kanagawa et al. (2018) for a recent review. Here we
adapt those results to our panel data setting. We first represent the MTGP estimate as a weighting
estimator with separate unit and time weights, and give error bounds under fairly general conditions
on the latent (noiseless) outcomes. We then describe several special cases to better illustrate this

result.

4.1 Weighting representation

We now show that the MTGP estimate with separable unit and time kernels has a corresponding
representation as a weighting estimator with separate unit and time weights. This setup differs
from our fully Bayesian formulation above; to make this connection with weighting, we instead
consider a Frequentist setup that assumes a known kernel. Specifically, conditional on hyperpa-
rameters, the MTGP estimate can be written as the solution to a constrained optimization problem
that minimizes the worst-case mean-square error across the “noiseless” latent functions, f. This

representation exploits the connection between Gaussian Processes and kernel ridge regression
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(Kanagawa et al., 2018); see Hazlett and Xu (2018) for additional discussion of kernel weighting
methods for panel data.

To set up the problem, we again assume that (control) potential outcomes are the sum of
structural and error components, Yj;(0) = fir + €it, where £;; is mean-zero noise. We assume that
f is “well behaved” in the sense of belonging to a Reproducing Kernel Hilbert Space (RKHS);
this setup is quite flexible and incorporates a wide range of function classes (see, e.g., Wainwright,
2019). We focus on the ICM kernel, K = Kijme ® Kunit, where, as in other Frequentist analyses,
the kernel is assumed known.

We can then represent the MTGP as a weighting estimator. We consider two basic forms, cor-
responding to the weight-space and function-space interpretations of Gaussian processes (Williams
and Rasmussen (2006), Ch. 2). We first show that the MTGP minimizes the worst-case imbalance
in the noiseless latent functions f. We then show the equivalent formulation in terms of imbalance

on the observed outcomes Y.

Proposition 4.1. Let Y;;(0) = fit + €ir, where f is a fixed function. Let Hj be the RKHS for
kernel k£ with Hilbert-Schmidt norm, ||f ||§_Lk = k(f,f). Then let f be contained in the unit ball
of the reproducing Hilbert space, | f|l%, < 1, where k( (i,t),(V',t') ) = kunit(?,7) X Ktime(t,t'),
and ¢;; are iid mean-zero random variables with observed variance o2 > 0. Further, model the
time covariance Kijyne with a squared exponential kernel with lengthscale p, and model the unit
covariance Kunit = S67. Finally, let 'y(i) e RY and A® e RT be the vectors of unit and time
weights for target unit ¢ at time ¢, and let v and A, respectively, be the set of weights across all

targets. Then:

(a) The unit and time weights, v and A, have the following closed form:
. —1 .
’Y(l) & )\(t) == (Ktime ® Kunit + UQH) (ktime(ta ) ® kunit(lv )) . (6)
The posterior (predictive) mean estimate for target observation (1,t*) & C, for t* > Ty is:

fiage = Z VZ(I)AzEt*)Y;t'
(i,t)eC

(b) The unit and time weights also solve the following, equivalent optimization problems, in terms
of (1) the weight-space formulation:

2

min sup Y (i D w N e |+ PINIBIAL (7)
T € (i pec (i' t')eC
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and (2) the function-space formulation:

2

min Z Yie — Z al('f)kunit(iv i') -é}(f)ktime(t, t") Yiry + P tva) K{E®a),
(i,t)eC (#',t")eC

b A

(8)

where K = Kiime @ Kynit and where ol € RY and §(t) € RT are the coefficient vectors
for target unit ¢ at time ¢, with ’yi(,z) = agf)kunit(i,i’) and /\g) = fg)ktime(t,t’), and with

corresponding sets a and &.

(c) This estimate has the following out-of-training-sample estimation error for the structural
component of the missing potential outcome fys«,
1/2
2

9)

|flt* - /llt*

2

-~

| N6 n,740) +

error for fi;x irreducible noise

Proposition 4.1 begins with the algebraic result that the posterior mean estimate of the MTGP
can be written as a weighting estimator, and that these overall weights separate into unit- and time-
weights. This separation does not hold in general, but, in our setting with an ICM kernel, follows
immediately from the restriction that the unit and time covariances are separable (Bonilla et al.,
2008). As a result, we can view our proposed MTGP approach as a doubly-weighted panel data
estimator, similar to recent proposals from e.g. Ben-Michael et al. (2021a) and Arkhangelsky et al.
(2019) that also impute the counterfactual as a double weighted average. Importantly, the MTGP
implicitly estimates unit and time weights simultaneously, while previous proposals construct them
separately.

Proposition 4.1 then leverages Frequentist results on GPs to provide additional intuition for
these weights (see Kanagawa et al., 2018). First, Equation (7) shows that the MTGP weights
minimize the error on the noiseless outcome functions, subject to regularization on the weights.
Importantly, this formulation does not rely on parametric assumptions, only that the noiseless
outcomes, f;;, are relatively “well behaved” in the sense of belonging to an RKHS. Equivalently,
Equation (8) shows that the weights can be seen as the solution to an equivalent optimization
problem in terms of minimizing imbalance in the observed outcomes directly, but subject to regu-
larization on the “coefficients” o and &, rather than on the weights themselves. Finally, building off
this, Equation (9) shows that the error bound depends directly on the distance between the control
observations, C, and the unobserved point, (1,t*). Specifically, with a squared exponential kernel,

Etime(t*, ), the bound is increasing for t* > Tj. See Fiedler et al. (2021) for recent generalizations
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of such bounds under model mis-specification.

Outcome model. We can incorporate a (prior) outcome model into the posterior mean estimate,
echoing several recent proposals that combine outcome modeling and weighting in the panel data
setting (see, e.g. Ben-Michael et al., 2021a; Ferman and Pinto, 2021; Arkhangelsky and Imbens,
2021):

figf = Z %'(1))‘?*)5/@' + (mu* - Z %'(1))&*)7”%) (10)
(i,t)eC (i,t)eC
estimated bias
= My + Z %-(1))\?*)(1/@'1& — Mjt), (11)
(i,t)eC

re-weighted residuals

where m;; is the outcome (prior mean) model for unit ¢ at time ¢. Equation (10) has a form
similar to bias correction for matching (Rubin, 1973), which corrects the doubly-weighted average
by an estimate of the difference in the outcome model m;;. Equation (11) instead has the form of
augmented inverse propensity score weighting (Robins, 1997), which re-weights the outcome model

residuals.
4.2 Special cases
To help build intuition for the weighting representation, we consider two special cases: (1) the unit

kernel Kyyit is the identity; and (2) the time kernel Kyipe is the identity matrix.

Identity unit covariance. First, let the unit covariance Ky;x be the identity matrix. We can
view this as the setting where there is no correlation between the underlying processes for each unit,
so each model component is an independent GP. In this setting, there is nothing to be learned from
the comparison units, and the MTGP estimate only compares to the pre-treatment outcomes of
the treated unit. In particular, following the setup in Proposition 4.1, if we set the unit covariance

matrix Kyt to be the identity, then the weights for post-treatment time period t* > Ty are
A(t*) = (Ktime + O']ITO)ilktime(t*v ')a
with posterior mean estimate:
To
 hori t*
e = 3N W
t=1

This is a horizontal regression formulation (see Athey et al., 2021). As these weights ignore

the outcomes for the comparison units, we can view this case as fitting N separate single-task GP
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models, one for each unit. Thus, when the unit covariance is the identity matrix, this problem
ignores the outcomes for comparison units and reduces to the single-task GP for the treated unit

discussed in Section 3.1.

Identity time kernel. Next, let the time kernel Ky be the identity matrix. This corresponds
to the setting where there is no smoothness at all in the underlying latent functions, so the function
value can change wildly between time periods. In this case, it is impossible to use outcomes from
different time periods to inform our estimates, and so only the unit weights remain. Again following
the setup in Proposition 4.1, if the time covariance matrix Kiipe is the identity, then the weights
for the treated unit are:

YW = (Kunit + 0Tn) ™ kunie (1),

with posterior mean estimate:

N
i = >
1=2

This is a vertical regression setup (see Doudchenko and Imbens, 2016), and corresponds to the
implicit weights of a linear factor model or interactive fixed effects model (Gobillon and Magnac,
2016; Xu, 2017; Athey et al., 2021). The estimator only uses the learned unit covariance to implicitly

construct weights over comparison units.

5 Model diagnostics and estimated impact for APPS

We now use the MTGP framework to estimate the impact of APPS on homicides. We begin by
using posterior predictive checks to guide the choice of model. We then estimate the impacts both

on overall homicides and separately on gun- and non-gun-related homicides.

5.1 Posterior Predictive Checks and other model diagnostics

Diagnostics and other forms of model criticism are important components of the Bayesian workflow,
helping researchers diagnose and compare the fit of the proposed models (Gelman et al., 2013). We
begin with posterior predictive checks (PPCs). First, we choose a test statistic, T'(data, #), which
reflects a relevant aspect of model fit and is a function of both data and model parameters. We
then compare the posterior predictive distribution of this statistic, 7'(datayep, @), to the value of
the test statistic for the observed data, T'(datagps, @), over draws of 6.

PPCs play an especially important role in panel data settings like ours, where it is often difficult
to decide between modeling approaches given limited data. In particular, posterior predictive checks
avoid many of the inferential issues associated with, for example, testing for parallel trends prior
to estimating a difference-in-differences model (Roth, 2019). See Liu et al. (2020) for a review of

Frequentist approaches to model checks for panel data, including equivalence and placebo tests.
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Figure 2: Posterior Predictive Checks (PPCs) for the pre-treatment RMSE for Cali-
fornia. Numbers indicate posterior predictive p-value associated with each rank, i.e.,
P (T'(datayep, #) > T'(datagps, 0) | data).

We focus on two common measures of model fit: the overall pre-treatment fit and the pre-
treatment imbalance at each time point. First, we evaluate the pre-treatment fit for California by

comparing the posterior predictive distribution of the root mean squared error (RMSE),

To
* 1 *
T(Y".0) = ?0 Z(Yit - flt)27
t=1

to the observed RMSE, T'(Y, 0) =7 \/ Z (Y1: — f1t)?, where Y7} is a posterior predictive draw of
the overall murder rate for California at (pre treatment) time ¢. Figure 2 shows the distributions for
both Gaussian and Poisson observation models with ranks J = 0,...,7. For each combination, we
also compute the posterior predictive p-value, the fraction of posterior predictive test statistics that
are larger than the observed test statistic. For both Gaussian and Poisson models, the observed
RMSE is larger than we would expect for ranks 0 through 3, with minimal discrepancies by rank 5
for both models. The Poisson model has slightly lower RMSE, suggesting that Poisson with rank
5 is a reasonable initial choice here.

Figure 3 shows the imbalance at each pre-treatment time point for the Poisson MTGP model
with rank 5. The upper pane shows the observed data (in red) as well as posterior predictive draws
from the model on the scale of the original outcome (homicides per 100,000). The lower pane
instead shows the “gap” between the outcome and the posterior mean, T'(data, ) = Yi; — fi1s.”

Both plots show little difference between the observed data and the posterior predictive distribution,

"This is the Bayesian analog to estimates of placebo impacts that are standard in Frequentist panel data studies,
although we compare the observed estimates to the posterior predictive distribution rather than to zero.
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Pre—treatment imbalance: Poisson MTGP with Rank 5
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Figure 3: Pre-treatment imbalance for Poisson model with Rank 5. Observed data is in red.

suggesting reasonable model fit along the dimensions we investigate here.

Finally, the Appendix includes several additional model diagnostics. Appendix Figure C.2 shows
the coverage of the 50% and 95% posterior predictive intervals for pre-treatment outcomes across
all 50 states, computed as = Yo I(LY, < Yy < Ujj) where Lj; and Ujj are the lower and upper
endpoints of the credible region with probability ¢ for unit ¢ at time ¢. The Poisson intervals have
close to nominal coverage for ranks 4 and 5, but under-cover for lower ranks and over-cover for
higher ranks. By contrast, the corresponding Gaussian intervals over-cover across all ranks, with
especially poor coverage for the 50% intervals for higher ranks, leading further credence to the
Poisson model over the Gaussian model. This difference is likely due to the fact that the sampling
variance increases with the mean in the Poisson model but is constant in the mean and across units
for the Gaussian model.

In Appendix Figures C.3 and C.4 we show the inferred Gaussian Process for the time-specific
intercept and the estimated factors from the rank 5 Poisson model next to the factor loadings
for California. In Appendix Figures C.5 and C.6, we show the inferred time and unit weights
for California in the first post-treatment period using a rank 5 Gaussian multitask Gaussian pro-
cess without the global time series trend GP. Each of the time and unit weights are obtained by
marginalizing over the non-relevant component (unit, or time, respectively) for each sample from

the MCMC sampler.

5.2 Impact of APPS on homicides

We now turn to estimating the impact of APPS on homicides in California. We begin with the

overall impact and then disaggregate by gun and non-gun-related homicides.
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Figure 4: Impact of APPS on homicides per 100,000 in California by year. The observed data is
show in red. The black line is the posterior mean estimate; the dark and light gray regions are,
respectively, the 50% and 95% posterior predictive intervals.

Overall impact of APPS. Based on our model diagnostics above, we focus on the MTGP
estimated with rank J = 5, Poisson observation model, and unit- and time-specific intercepts.
Figure 4 shows the estimated impact of APPS on homicide rates in California over time.® The
upper pane shows the posterior predictive distribution from the MTGP, with the posterior mean
as well as 50% and 95% posterior predictive intervals. The red line shows the observed murder rate
for California. The estimates pre-treatment repeat the pre-treatment imbalance checks in Figure 3;
the counterfactual estimates post-treatment are consistently higher than the observed murder rate.
The lower pane shows this difference explicitly, where zero is no impact. These estimates suggest
that APPS reduced murders in the state, with both impacts and uncertainty growing over time.
Figure 5 shows the posterior estimates for the average annual impact. The posterior mean
estimate is roughly 1.4 murders avoided per 100,000 people per year, with a 95% credible interval
of (0.5,3.6) murders per 100,000 people. To contextualize these estimates, California’s annual
murder rate in 2004 and 2005 was 6.8 per 100,000. Focusing on the smaller end of the 95%
credible interval suggests a decline of at least 8 percent from baseline. We can also compare
the annual number of murders prevented by this system to expenditures for APPS investigative

teams. In 2018, California’s population was 39.6 million. An increment in the murder rate of

8 Appendix Figure C.10 shows the corresponding estimates after adjusting for auxiliary covariates and several
measures of crime, all for 2005. The auxiliary covariates are: the prison incarceration rate, the age distribution
(percent 0-17, 18-24, 25-44, 45-64, 65 and older), the percent Black, the unemployment rate, the poverty rate, and
log median income. The crime measures, normalized by population, are: overall violent crime, rape, robbery, assault,
property crime, burglary, larceny, and motor/vehicular crime. As the results are largely unchanged, we focus on the
unadjusted estimate here.
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Posterior Estimates of Impact of APPS on Murders in CA
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Figure 5: (left) Posterior distribution of the average impact of APPS on homicides per 100,000
in California for 2007 to 2017; (right) Posterior distribution of the cost per murder avoided, with
a state population of 39.6 million and annual budget expenditure of $11.3 million. The solid line
denotes the posterior mean; the dashed lines denote 95% credible intervals.

0.5 corresponds to nearly 200 murders avoided per year. Total funding for APPS investigation
teams in fiscal year 2017-2018 stood at $11.3 million (Petek, 2019). For this range of estimates
of homicide prevented, a (conservative) back-of-the-envelope calculation suggests expenditures of
around $50,000 per murder prevented. This value is considerably lower than conventional value-
of-a-statistical-life (VSL) estimates, which tend towards $10 million per life saved (Heaton, 2010;
Dominguez and Raphael, 2015).7

Separate impacts on gun- and non-gun-related homicides. Substantively, an important
check is to estimate separate impacts of APPS on gun- and non-gun-related. In particular, we expect
the impact of APPS to be entirely on gun-related homicides, with negligible impacts on non-gun
homicides.!’ Following Ben-Michael et al. (2021), we also apply our approach to a different data

source that disaggregates overall homicides by whether a firearm was used (Kaplan, 2019).!

9Given the pain and anguish suffered by murder victims and their loved ones, the VSL estimate greatly undervalues
the true costs of homicide. To be sure, the actual costs of the program are likely higher as other units within the
California Department of Justice, as well as other law enforcement agencies throughout the state, contribute resources
to the enforcement efforts carried out via the APPS program. Nonetheless, this program has a very high benefit-cost
ratio based these back-of-the-envelope calculations.

10Tp fact, if there is substitution across weapons associated with relative cost and availability among those deter-
mined to commit murder, we might hypothesize that APPS may have increased homicide rates where firearms are
not used.

11 particular, we use the Kaplan (2019) concatenation of the UCR Supplementary Homicide Files, restricted to
our study period (1997 through 2016). We first use the incident level data to calculate totals by state and year of
the number of murders involving a firearm and the number of murders where a gun is not used. We then use these
totals in conjunction with state level population counts to tabulate rates per 100,000. In general, gun murder rates
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Observed and posterior predictive distribution of homicide rates
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Figure 6: Impact of APPS on gun- and non-gun-related homicides per 100,000 in California by
year. The observed data is show in red. The black line is the posterior mean estimate; the dark
and light gray regions are, respectively, the 50% and 95% posterior predictive intervals.

Figure 6 shows estimates for gun- and non-gun-related homicides, estimated via a joint multitask
GP. Fitting both outcomes jointly is advantageous since these two outcomes are positively correlated
due to shared latent factors. (See Appendix Figure C.11, for the posterior predictive correlation
between gun and non-gun related homicides for California). While estimates are derived from a
different data source than used above, the impacts for gun-related homicides are nearly identical
to the estimated overall impacts in Figure 5. In contrast, the estimated impact of APPS on non-

gun-related homicides is essentially zero.

6 Discussion

This paper uses a multitask Gaussian Processes framework in a panel data setting to estimate
the causal effect of an innovative gun control program in California. MTGPs find a natural mid-
dle ground between pure “horizontal” time series forecasting models, based on extrapolating the
treated unit’s outcomes series alone, and pure “vertical” regression models, based on a weighted
average of control units’ outcomes. Further, MTGPs automatically quantify the relevant sources of
uncertainty, providing a unified Bayesian framework in a setting where uncertainty quantification
is notoriously challenging. They also allow for extensive model diagnostics via posterior predic-
tive checks. Building on a robust GP literature, there are also many immediate extensions to the
standard MTGP setup, including allowing for multiple outcomes and incorporating a mean model.

Using this flexible approach, we find large effects of APPS on homicides in California, with program

are two to three times that of non-gun murder rates. See Ben-Michael et al. (2021) for additional discussion.
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benefits far exceeding costs under typical assumptions.

There are several promising directions for future research. First, there are many existing results
for Gaussian Processes that would apply immediately in other settings but are not as relevant in
our application. For instance, standard panel data models face a range of practical challenges when
the data structure deviates from a so-called “balanced panel,” either due to irregularly sampled
observations over time or due to missing data (see Imai and Kim, 2019). The MTGP framework
naturally accommodates both irregularly sampled time points and missing values, and, unlike most
Frequentist approaches, will automatically propagate the corresponding uncertainty.

We can also extend this approach to allow for multiple treated units that adopt treatment over
time, also known as staggered adoption (e.g., Ben-Michael et al., 2021b). First, we can immediately
extend to the case where multiple treated units adopt treatment at the same time (i.e., simultaneous
adoption) by changing the target to the average of the treated units. However, the extension to
the case when units adopt over time (i.e., staggered adoption) is slightly more complicated. For
instance, we could adapt the model to have a separate kernel for each treatment time, possibly
including a hierarchical structure on the kernels (Flaxman et al., 2015).

Next, we can develop a framework for assessing sensitivity to departures from key modeling
assumptions for the MTGP approach, especially the restriction that the time and unit kernels
are separable. While there are many possible generalizations (see, for example Alvarez, 2017),
these are inherently under-specified in settings like ours with relatively few units and time periods.
Thus, a sensitivity analysis approach in the spirit of Franks et al. (2019) is a natural avenue for
appropriately quantifying uncertainty in this case.

Finally, our proposed MTGP approach implicitly puts the same weight on the error for California
as on other states, even though California is the target unit. We can explore alternative approaches
for parameterizing similarity across units and time, such as by imposing an “arrowhead” structure

on the overall covariance, or by learning a richer dependence structure across units; see, for example,
Li and Kontar (2020).
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A Estimation and implementation choices

A.1 Single outcome

Both the Gaussian and Poisson model share the following three components to model the latent
process

1. Each unit, 4, is given an independent offset drawn from a standard normal distribution,
v ~ N(0,1), providing a unit-specific intercept.

2. The global trend is modeled as a single-task Gaussian process with lengthscale pgiobals

Pglobal ~ InvGamma(5, 5)
g ~ N (0, Kgiobal; Pglobal)
where Kgjghal is a covariance matrix with each entry given by the squared exponential kernel
2
with lengthscale, p, i.e. Kgiobal(7,7) = exp (—W).
3. Individual components are modeled with a multitask Gaussian process with a rank k task-

covariance matrix,

ptime ~ InvGamma(5, 5)
Atime ~ N (0,1)
B~ N(0, ;)
Kunit = 887
vec(f) ~ N(0, Keime @ Kunit; ptime, Qtime)

4. The variance for a Normal outcome is drawn from o2 ~ N(0, 1)

With Kiine is a squared exponential kernel of the same form as Kgiopal. For the Gaussian link, a
shared standard deviation is drawn, o ~ A (0,1), and the observed control outcomes for each unit,
i, are modeled as

Y; o?
— ~ 7 fz == I
N, J\/(u +fi+g m)

where N is a matrix containing the population for each state for all time periods. Similarly, for the
Poisson link function the observed untreated outcomes for each unit is modeled as

Y; ~ Pois (N; 4+ exp (v + £ + g)),

where N; is an offset.

A.2 Multiple outcomes

The multi-outcome models analogously use the following components,
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1. The hyperparameters of the global and individual kernels are drawn as

Pglobal ~ InvGamma(5, 5)
Qglobal ™~ N(O, 1)

2. The global time trend for each outcome is drawn as
g N(O, Kglobal; Pglobals O5g10bal>

3. Individual components are modeled as

Ptime ~ InvGamma(5, 5)
Kunit = 5/8T

4. Each unit is given an independent intercept for each outcome drawn from a standard normal
distribution v ~ N(0,1).

5. The covariance between outcomes is modeled as

Z ~ N(0,T)
Koutcome 1= ZZT

and the latent function is drawn as

VeC(f) ~ N(O’ Kiime @ Kunit ® Koutcomes; ptime)

6. The variance for each Normal outcome is drawn from o2 ~ A(0,1)

Finally the probability of each outcome is modeled as

Y. . 0'2.
Nilj ~ N (vij+fij + gj, fliri)

for the normal outcome for unit ¢ and outcome j, and
Y, ; ~ Pois (N; + exp vij+ 8+ gj)
for the Poisson.

A.3 Additional computational details

Naive estimation of the latent variable MTGP formulation used in our model has O(NT?) com-
plexity due of the cost of taking the Cholesky decomposition of Kiime ® Kynit, with an additional
O(NT?) complexity from multiplying the Cholesky decomposition with an NT length draw from
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a standard normal. This can be reduced by utilizing properties of the Kronecker product, namely
that

chol (Kypit ® Ktime) vec(Z) = (chol(Kypit) ® chol(Ktime)) vec(Z)
= (chol(Kypit) ® chol(Ktime)) vec(Z) = vec (chol(Ktime)TZchol(Kunit))

Which avoids performing Cholesky decomposition on the combined matrix Kijme @ Kunit, and
instead entails taking separate decompositions of the matrices individually which results in a
complexity of O (maX(T 54N 3)) We reduce complexity further by taking advantage of the
form of Kunit = BB, where f € RN** which, when k is sufficiently small, is substantially
smaller than RY*N.  The sampling procedure then consists of drawing Z € RM* and tak-
ing vec (chol(Ktime)ZBT). The final complexity with this low rank parameterization is then
@) (max (T3 + N k:)) which provides substantial advantage when N is sufficiently large. Finally,
we note that in cases where 7' is large, a number of methods can be used to improve computational
efficiency (see Solin and Sarkka, 2020; Wilson et al., 2015; Flaxman et al., 2015).
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B

Proofs

Proposition 4.1. Let Y;;(0) = fit + €ir, where f is a fixed function. Let Hj be the RKHS for
kernel k£ with Hilbert-Schmidt norm, ||f H%_[k = k(f,f). Then let f be contained in the unit ball
of the reproducing Hilbert space, | f|ln, < 1, where k( (i,t),(7,t') ) = kunit(?,7) X Ktime(t,t'),
and ¢;; are iid mean-zero random variables with observed variance o2 > 0. Further, model the
time covariance Kiime with a squared exponential kernel with lengthscale p, and model the unit
covariance Kynix = S6". Finally, let fy(i) e RY and \® e RT be the vectors of unit and time
weights for target unit ¢ at time ¢, and let v and A, respectively, be the set of weights across all
targets. Then:

(a)

The unit and time weights, v and A, have the following closed form:
; —1 .
’}/(l) & )\(t) = (Ktime ® Kunit + Uzﬂ) (ktime(tu ) ® kunit(lv )) : (6)

The posterior (predictive) mean estimate for target observation (1,t*) & C, for t* > Ty is:

i = > A Y
(i,t)eC

The unit and time weights also solve the following, equivalent optimization problems, in terms
of (1) the weight-space formulation:

2
. i)\ (t
min - sup > | fa— > AN |+ SNBINE, (7)
77A fEHk ( )
i,t)eC (i, eC
and (2) the function-space formulation:
2

. - (Z) LAY (t) ) / " 2 T
Igln Z Y Z (627 kunlt(% ? ) ft/ ktlme(ta t ) Ying + o (S X a) K (€ ® O() s
(i,6)eC (i',t")eC

0 N
(8)
where K = Kiime @ Kynit and where ol € RY and f(t) € RT are the coefficient vectors

for target unit 7 at time ¢, with 'yl.(,i) = al(.,i)k:unit(i,i’) and )\g) = ét(,t)k:time(t,t’), and with
corresponding sets o and €.

This estimate has the following out-of-training-sample estimation error for the structural
component of the missing potential outcome fys=,

1/2

=12 | 7O kit ) + 2O f|

error for fq.+ irreducible noise

34



Proof. The proof largely follows from propositions in Kanagawa et al. (2018), presented here for
the sake of completeness.

Part (a). The form of the weights follows directly from the conditional expectation of the multi-
variate normal in Equation (2). Specifically, the posterior (predictive) mean of the MTGP for unit
1 at time ¢ is:
fuit = (Kobs + 0°1) " k((i, 1), ) Y1
-1 .
= (Ktime ® Kunit + UQH) (ktime(ta ) ® Kunit (Z, )) Y1

w
(4,%)
= Z wi/t/ }/Z‘/t/ 5
(i' #)eC

for general weights w(**) € RV*T for target observation (i,1t).

The separation of the overall weights w into the product of unit and time weights v and A
follows from fundamental properties of kernels. Specifically, the form of the ICM kernel is given
by the product of its constituent components, i.e. kiime(t,t)kunit(é,4"). This resulting kernel is
equivalent to

Ktime (£, t,)kunit(i’i,) = EfNN(QKtime) [f(t)—rf(t,)} EQNN(O,Kunit) [g(i)—rg(i/)} ‘
Finally, considering the full covariance we have

Kiime ® Kunit = (f /)@ (979) = (f®9) (f®g)

which we can see is the product of independent functions, with equivalent representations given in
terms of functions of the respective basis representations, f = AT ¢(t), and g = v (4).

Part (b). This is immediate from proposition 3.12 (equation 43) of Kanagawa et al. (2018) after
applying decomposing the weights into the time and unit components.

Part (c). We start with the following result from Kanagawa.

Proposition B.1. (Kanagawa et al., 2018) Assume that Y; = f; + ¢; where ¢ is independent zero-
mean noise, and f is a fixed function contained in the reproducing Hilbert space implied by the
kernel k. For any previously unobserved point, denoted t*, we have

T T
Dokl 40 = sup <ft* -2 u fi) |
i=1 i=1

feEH

where i indexes over the T observed points, and w = (K + o)~ k(t*,-).

The error bounds follow by applying this result, noting that the supremum forms an upper
bound, rearranging terms, and applying the separation of weights shown earlier. O
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C Additional results

C.1 Additional diagnostics

Observed and posterior predictive dist for California
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Figure C.1: Pre-treatment imbalance for Poisson model. 50% interval and 95% interval plotted.
Observed data is in red.
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Figure C.4: Inferred latent factors (top) and loadings for California. Note that the latent factors
are only identifiable up to rotation. Here, we order the factors according to the fraction of variance
explained across outcomes from all states, and we choose the sign of the factors so that the loadings

are all positive for California. All the estimated factors are smooth over time due to the kernel,
Ktime-
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Figure C.6: Inferred unit weights for California.
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C.2

Additional impact estimates

Homicides per 100,000

Observed and posterior predictive distribution of homicide rates
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Figure C.7: Estimates from MTGP for Normal model
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Observed and posterior predictive distribution of homicide rates
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Figure C.8: Estimates from MTGP for Normal model with a linear adjustment for background

covariates.
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Homicides per 100,000

Observed and posterior predictive distribution of homicide counts
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Figure C.9: Estimates from MTGP with Poisson link
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Observed and posterior predictive distribution of homicide counts
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Figure C.10: Estimates from MTGP with Poisson link and linear covariate adjustment.
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Figure C.11: Posterior predictive correlation between gun and non-gun related homicides in Cali-
fornia, pre-treatment.
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