Matrix Constraints and Multi-Task Learning for Covariate Balance

Eli Ben-Michael and Avi Feller (U.C. Berkeley)

Summary

- Many estimators use multiple sets of weights
- Can jointly find all weights in a single optimization problem
- Dual view as multi-task learning and hierarchical modeling
- Can combine design-based weights with outcome modeling (AIPW)

Motivation: Estimating Multiple Means

Typical to use more than one set of weights in an estimator

- Estimating the ATE (vs. ATT)
- Heterogeneous treatment effects and subgroup effects
- Obs. study with missing outcomes (IPTW + IPMW; SUR)
- Multilevel observational study

Instead of fitting weights separately, we can exploit natural structure

Vector Constraints for Covariate Balance

Choose weights that balance covariates and are close to uniform

$$\min_{\gamma \in \mathbb{R}^{n_0}} \sum_{T=0}^{\infty} f(\gamma_i) + h(\bar{X}_1 - X_0'\gamma)$$

 $X_1 \in \mathbb{R}^{n_1 \times d}, X_0 \in \mathbb{R}^{n_0 \times d}$: treated/control; $\bar{X}_1 \in \mathbb{R}^d$: treated means General formulation encompasses several estimators, [1, 2, 3, 4, 5]

- **Dispersion Function**: f penalizes large weights
- Balance Criterion: h measures covariate balance

Dual representation as regularized M-estimator of p-score

$$\min_{\theta \in \mathbb{R}^d} \sum_{T_i=0}^n f^*(X_i'\theta) - \bar{X}_1'\theta + h^*(\theta)$$

Where g^* is the convex conjugate of g.

- Odds Function: $f^{*\prime}(X'\theta) = \frac{\pi(X)}{1-\pi(X)}$
- Regularization: h^* penalizes complex models

Example 1: Entropy Balancing [1] with L^{∞} constraint [5]

$$\min_{\gamma \in \mathbb{R}^{n_0}} \sum_{T_i=0} \gamma_i \log \gamma_i$$

s.t.
$$\|\bar{X}_1 - X_0'\gamma\|_{\infty} \leq \delta$$

Dual fits logit p-score with LASSO penalty

$$\min_{\theta \in \mathbb{R}^d} \sum_{T_i=0} \exp(X_i'\theta - 1) - \bar{X}_1'\theta + \delta \|\theta\|_1$$

Matrix Constraints: Special Cases

Example 2: Estimating subgroup ATT

$$\tau_k = \mathbb{E}[Y(1) - Y(0) \mid T = 1, G = k]$$

Primal: Weighted Frobenius *soft* constraint

$$\min_{\Gamma \in \mathbb{R}^{n_0 \times m}} \sum_{k=1}^{m} \sum_{G_i = k, T_i = 0} \Gamma_{ik} \log \Gamma_{ik} + \frac{\lambda}{2} \operatorname{tr}((\bar{X}_1 - X_0'\Gamma)\Omega(\bar{X}_1 - X_0'\Gamma))$$

 $\bar{X}_1 \in \mathbb{R}^{d \times m}$ subgroup treated means

Dual: Fully-interacted logit p-score with Hierarchical Prior

$$\min_{\Theta \in \mathbb{R}^{d \times m}} \sum_{k=1}^{m} \sum_{G_i = k, T_i = 0} \exp(X_i' \Theta_k - 1) - \operatorname{tr}(\bar{X}_1 \Theta') + \frac{\lambda}{2} \operatorname{tr}(\Theta \Omega^{-1} \Theta')$$

 $\Omega \in \mathbb{R}^{m \times m}$ corresponds to prior covariance

$$\Theta_{j1}, \ldots, \Theta_{jm} \sim \text{Normal}(0, \Omega)$$

Example 3: Estimating individual-level CATE

$$\tau_i = \mathbb{E}[Y(1) - Y(0) \mid X = x_i], \quad T_i = 1$$

Primal: Spectral norm *hard* constraint

$$\min_{\Gamma \in \mathbb{R}^{n_0 \times n_1}} \sum_{T_k = 1}^{\infty} \sum_{T_{ik}} \sum_{T_{ik}} \log \Gamma_{ik}$$
s.t.
$$\sup_{\|u\|_{2} = 1} \|(X_1 - X_0'\Gamma)u\|_2 \leq \delta$$

Dual: Individual logit p-score models have Low Rank

$$\min_{\Theta \in \mathbb{R}^{d \times n_1}} \sum_{T_k = 1} \sum_{T_i = 0} \left[\exp(X_i' \Theta_k - 1) - X_k' \Theta_k \right] + \delta \|\Theta\|_*$$

Corresponds to assuming that

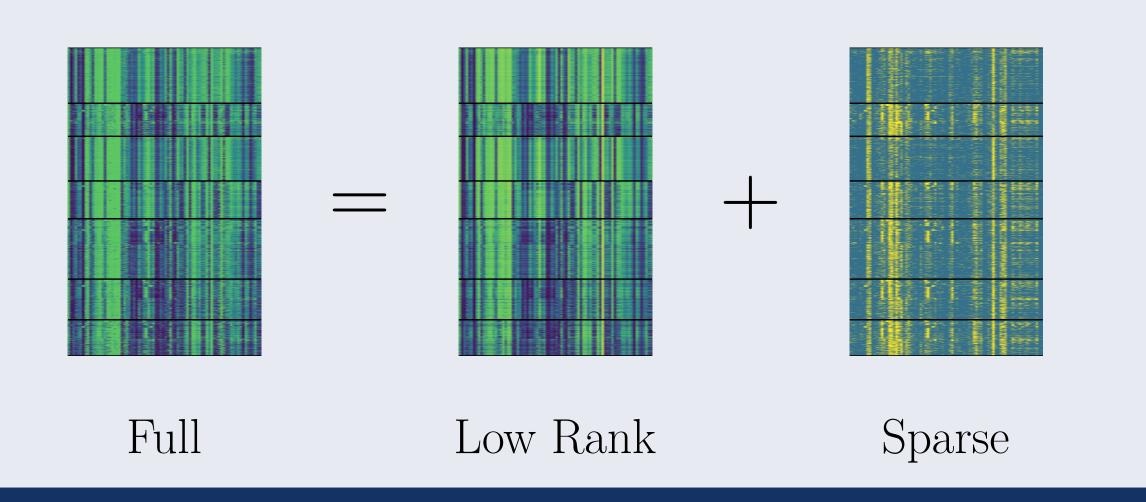
- There are $p \ll n_1$ archetypal models $U \in \mathbb{R}^{d \times p}$
- Each realization: weighted average $\Theta = UV', V \in \mathbb{R}^{n_1 \times p}$

We can also combine vector and matrix constraints

Primal: Spectral norm and L^{∞} hard constraint

$$\min_{\substack{\Gamma \in \mathbb{R}^{n_0 \times n_1} \\ \Gamma \in \mathbb{R}^{n_0 \times n_1}}} \sum_{\substack{T_k = 1 \\ T_i = 0}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma || 1}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty} \leq \delta_2}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty} \leq \delta_2}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty} \leq \delta_2}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty} \leq \delta_2}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty} \leq \delta_2}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty} \leq \delta_2}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty} \leq \delta_2}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0' \Gamma ||_{\infty}}}} \sum_{\substack{T_i \in \mathbb{R}^{n_0 \times n_1} \\ || X_i - X_0'$$

Dual: Robust PCA decomposition, used in image processing [6]



Matrix Constraints and Multi-Task Learning

Primal: Measure dispersion separately, **balance** jointly

$$\min_{\Gamma} \sum_{k=1}^{m} \sum_{i} (1 - T_i) f(\Gamma_{ik}) + h\left(\bar{X}_1 - X_0'\Gamma\right)$$

Dual: Fit p-score models separately, regularize jointly

$$\min_{\Theta} \sum_{k=1}^{m} \sum_{i} \left[(1 - T_i) f^*(\Theta_k' X_i) - \frac{1}{n_{1k}} T_i X_i' \Theta_k \right] + h^*(\Theta)$$

Sim Study: Matrix vs. Vector Constraints

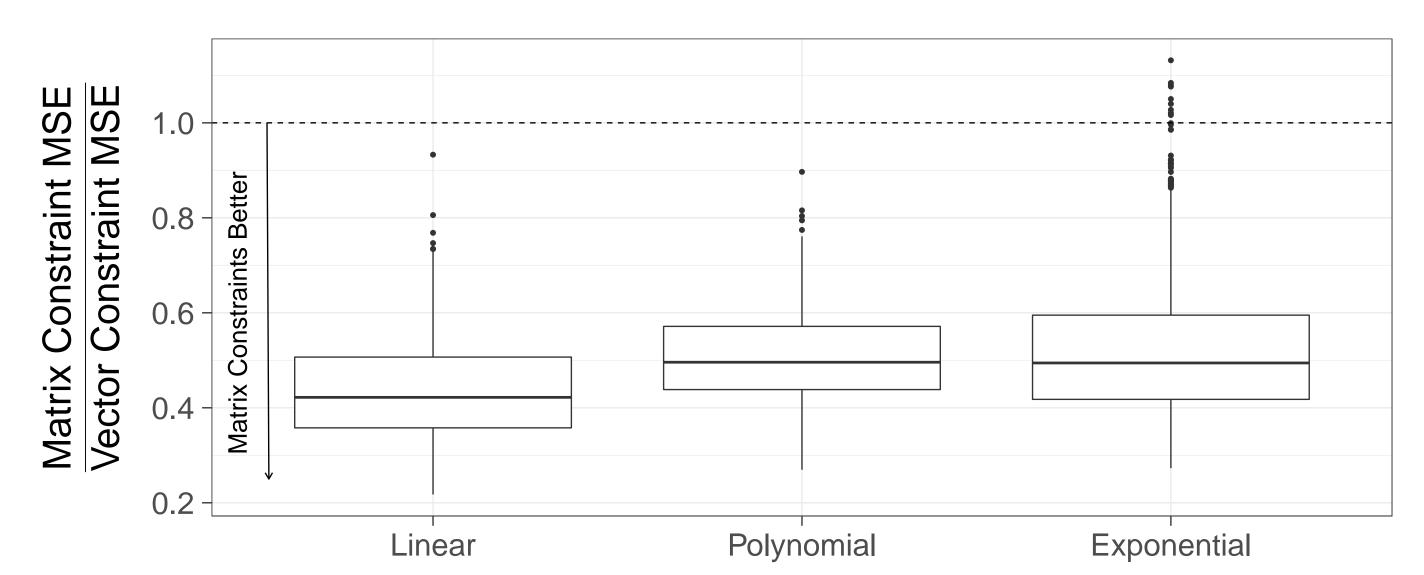


Fig: MSE ratio of Nuclear (Matrix) vs L1 (Vector) penalties, following [7]

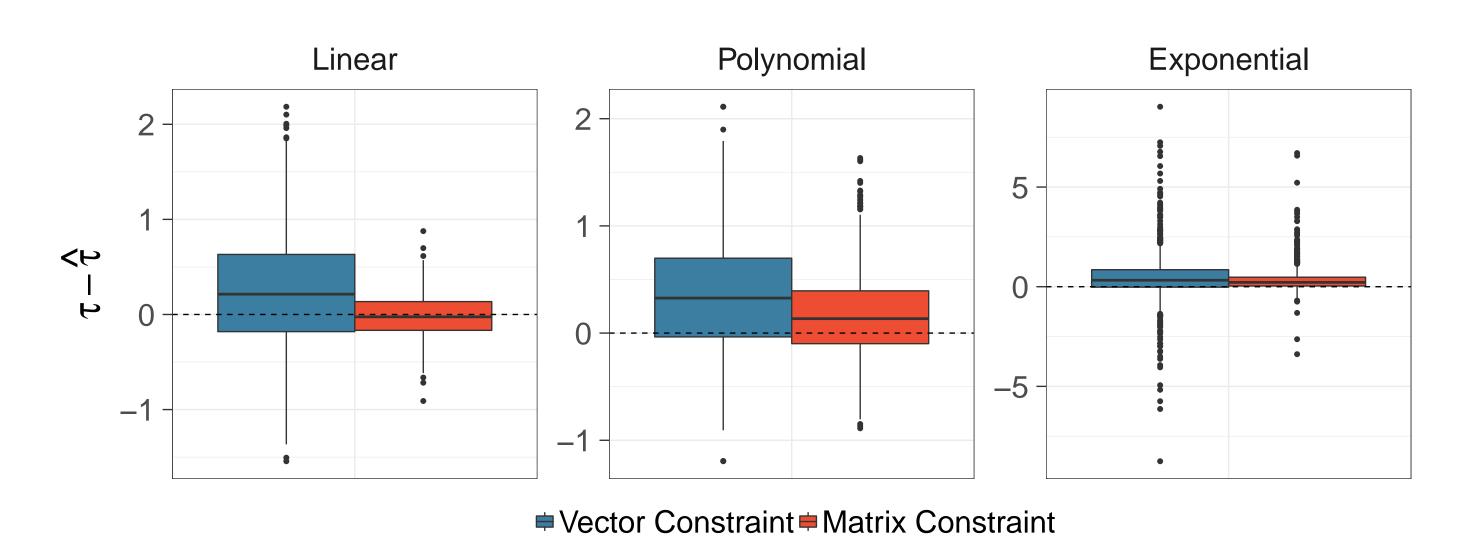


Fig: ATT estimates with Nuclear (Matrix) vs L1 (Vector) penalties, following [7]

References

- [1] J. Hainmueller, "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," *Political Analysis*, vol. 20, pp. 25–46, 2011.
- [2] J. R. Zubizarreta, "Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data," *Journal of the American Statistical Association*, vol. 110, no. 511, pp. 910–922, 2015.
- [3] Q. Zhao and D. Percival, "Entropy Balancing is Doubly Robust," Journal of Causal Inference, 2016.
- [4] Q. Zhao, "Covariate Balancing Propensity Score by Tailored Loss Functions," 2017.
- [5] Y. Wang and J. R. Zubizarreta, "Minimal Approximately Balancing Weights: Asymptotic Properties and Practical Considerations." 2018.
- [6] E. J. Candes, X. Li, Y. Ma, and J. Wright, "Robust principal component analysis," *Journal of the ACM*, vol. 58, no. 3, pp. 11:1—-11:37,
- [7] J. L. Hill, "Bayesian nonparametric modeling for causal inference," *Journal of Computational and Graphical Statistics*, vol. 20, no. 1, pp. 217–240, 2011.