Summary

« Many estimators use multiple sets of weights
« Can jointly find all weights in a single optimization problem

« Dual view as multi-task learning and hierarchical modeling

» Can combine design-based weights with outcome modeling (AIPW)

Motivation: Estimating Multiple Means

Typical to use more than one set of weights in an estimator

« Estimating the ATE (vs. ATT)
« Heterogeneous treatment effects and subgroup effects

« Obs. study with missing outcomes (IPTW + IPMW; SUR)
« Multilevel observational study

Instead of fitting weights separately, we can exploit natural structure

Vector Constraints for Covariate Balance

Choose weights that balance covariates and are close to uniform

. Vs /
miy 2 (i) + h(X1 = X7)

X, e R4 X, € R™*4: treated/control; X; € R% treated means
General formulation encompasses several estimators, (1, 2, 3, 4, 5]

» Dispersion Function: f penalizes large weights

= Balance Criterion: h measures covariate balance

Dual representation as reqularized M -estimator of p-score
min > (X)) — X0+ h*(0)
HcRd T.=0

Where ¢* is the convexr conjugate of g.

» Odds Function: f¥(X'0) = 1?;)(())()

» Regularization: h™ penalizes complex models

Dual fits logit p-score with LASSO penalty

min > exp(X/0 — 1) — X0 + 50|
QERCZTZ.:O

Matrix Constraints: Special Cases

Example 2: Estimating subgroup ATT
n=EY(1)=Y(0)|T=1G =k
Primal: Weighted Frobenius soft constraint

A

min Y. Y TyplogDis + 5tr((X1 — XX, — X))

PERM0™™ 1 Gi=k,T;=0

X, € R™™ gubgroup treated means

Dual: Fully-interacted logit p-score with Hierarchical Prior
m _ A
min > Y exp(X/0p — 1) — tr(X,10) + = tr(6Q'e)
OERD™ .21 Gk, T=0 2
() € R™*™ corresponds to prior covariance

Oily ..., 0, ~ Normal(0, 2)

Example 3: Estimating individual-level CATE
=EY(1)—-Y(0) | X=xa] Ti=1
Primal: Spectral norm hard constraint

min >, > DylogDy
FeR™™™M 7 —1 T1=0

st sup |[(X7 — X Dulls <9

lullo=1

Dual: Individual logit p-score models have Low Rank

min Y. Y [exp(X/0, — 1) — X;0;] + 6]|O]|+

OER™ 73 =1 T=0

Corresponds to assuming that

. There are p < n; archetypal models U € R**?
= Bach realization: weighted average © = UV’ V € R™*P

We can also combine vector and matrix constraints

Primal: Spectral norm and L* hard constraint

min >, > DylogDy
PeR™M 1 —1 T=0

st sup ||(X7 — X{Dulls < 0

X7 — X(T|oo < 05

Dual: Robust PCA decomposition, used in image processing |6]

Full Low Rank Sparse
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Matrix Constraints and Multi-Task Learning

Primal: Measure dispersion separately, balance jointly

1(1(1Fin§§1 > (1 =T;)f(Tix) + h ()_(1 — X'

Dual: Fit p-score models separately, regularize jointly

m 1
min 33 |(1 = T)F(OLX) — —T.X[04] + h*(O)
O =1 sy ]

Sim Study: Matrix vs. Vector Constraints
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Fig: MSE ratio of Nuclear (Matrix) vs L1 (Vector) penalties, following |7]
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