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Summary

• Many estimators use multiple sets of weights
• Can jointly find all weights in a single optimization problem
• Dual view as multi-task learning and hierarchical modeling
• Can combine design-based weights with outcome modeling (AIPW)

Motivation: Estimating Multiple Means

Typical to use more than one set of weights in an estimator
• Estimating the ATE (vs. ATT)
• Heterogeneous treatment effects and subgroup effects
• Obs. study with missing outcomes (IPTW + IPMW; SUR)
• Multilevel observational study
Instead of fitting weights separately, we can exploit natural structure

Vector Constraints for Covariate Balance

Choose weights that balance covariates and are close to uniform
min
γ∈Rn0

∑
Ti=0

f (γi) + h(X̄1 −X ′0γ)

X1 ∈ Rn1×d, X0 ∈ Rn0×d: treated/control; X̄1 ∈ Rd: treated means
General formulation encompasses several estimators, [1, 2, 3, 4, 5]
• Dispersion Function: f penalizes large weights
• Balance Criterion: h measures covariate balance
Dual representation as regularized M-estimator of p-score

min
θ∈Rd

n∑
Ti=0

f ∗(X ′iθ)− X̄ ′1θ + h∗(θ)

Where g∗ is the convex conjugate of g.
• Odds Function: f ∗′(X ′θ) = π(X)

1−π(X)
• Regularization: h∗ penalizes complex models

Example 1: Entropy Balancing [1] with L∞ constraint [5]
min
γ∈Rn0

∑
Ti=0

γi log γi

s.t. ‖X̄1 −X ′0γ‖∞ ≤ δ

Dual fits logit p-score with LASSO penalty
min
θ∈Rd

∑
Ti=0

exp(X ′iθ − 1)− X̄ ′1θ + δ‖θ‖1

Matrix Constraints: Special Cases

Example 2: Estimating subgroup ATT
τk = E[Y (1)− Y (0) | T = 1, G = k]

Primal: Weighted Frobenius soft constraint

min
Γ∈Rn0×m

m∑
k=1

∑
Gi=k,Ti=0

Γik log Γik + λ

2
tr((X̄1 −X ′0Γ)Ω(X̄1 −X ′0Γ))

X̄1 ∈ Rd×m subgroup treated means
Dual: Fully-interacted logit p-score with Hierarchical Prior

min
Θ∈Rd×m

m∑
k=1

∑
Gi=k,Ti=0

exp(X ′iΘk − 1)− tr(X̄1Θ′) + λ

2
tr(ΘΩ−1Θ′)

Ω ∈ Rm×m corresponds to prior covariance
Θj1, . . . ,Θjm ∼ Normal(0,Ω)

Example 3: Estimating individual-level CATE
τi = E[Y (1)− Y (0) | X = xi], Ti = 1

Primal: Spectral norm hard constraint
min

Γ∈Rn0×n1

∑
Tk=1

∑
Ti=0

Γik log Γik

s.t. sup
‖u‖2=1

‖(X1 −X ′0Γ)u‖2 ≤ δ

Dual: Individual logit p-score models have Low Rank
min

Θ∈Rd×n1

∑
Tk=1

∑
Ti=0

[exp(X ′iΘk − 1)−X ′kΘk] + δ‖Θ‖∗

Corresponds to assuming that
• There are p� n1 archetypal models U ∈ Rd×p

• Each realization: weighted average Θ = UV ′, V ∈ Rn1×p

We can also combine vector and matrix constraints
Primal: Spectral norm and L∞ hard constraint

min
Γ∈Rn0×n1

∑
Tk=1

∑
Ti=0

Γik log Γik

s.t. sup
‖u‖2=1

‖(X1 −X ′0Γ)u‖2 ≤ δ1

‖X1 −X ′0Γ‖∞ ≤ δ2

Dual: Robust PCA decomposition, used in image processing [6]

= +

Full Low Rank Sparse

Matrix Constraints and Multi-Task Learning

Primal: Measure dispersion separately, balance jointly

min
Γ

m∑
k=1

∑
i

(1− Ti)f (Γik) + h
(
X̄1 −X ′0Γ

)

Dual: Fit p-score models separately, regularize jointly

min
Θ

m∑
k=1

∑
i

(1− Ti)f ∗(Θ′kXi)−
1
n1k

TiX
′
iΘk

 + h∗(Θ)

Sim Study: Matrix vs. Vector Constraints
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Fig: MSE ratio of Nuclear (Matrix) vs L1 (Vector) penalties, following [7]

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●●
●●●●
●

●

●

●●

●

●

●●

●

●
●
●●●●
●

●

●

●

●

●●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

Linear Polynomial Exponential

−5

0

5

−1

0

1

2

−1

0

1

2

τ−
τ̂

Vector Constraint Matrix Constraint

Fig: ATT estimates with Nuclear (Matrix) vs L1 (Vector) penalties, following [7]
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