

Partial identification via conditional linear programs

Eli Ben-Michael

with an application to learning individualized treatment rules

Overview

Problem: estimate expectation of unknown linear functions

$$heta = \mathbb{E}[\langle \boldsymbol{c}(X), \boldsymbol{p}^*(X) \rangle]$$
 see also [1, 2]

- Know J constraints on K variables $p^*(x)$: $Ap^*(x) = b(x)$
- $\boldsymbol{b}(x)$ and $\boldsymbol{c}(x)$ are identifiable, and $\boldsymbol{p}^*(x) \geq 0$

For each value of covariates x, have pair of conditional LPs

$$\theta_L(x) = \min_{A oldsymbol{p} = oldsymbol{b}(x), oldsymbol{p} \geq 0} \langle oldsymbol{c}(x), oldsymbol{p}
angle ext{ and } \theta_U(x) = \max_{A oldsymbol{p} = oldsymbol{b}(x), oldsymbol{p} \geq 0} \langle oldsymbol{c}(x), oldsymbol{p}
angle$$

Sharp, covariate-assisted bounds: $\mathbb{E}[\theta_L(X)] \leq \theta \leq \mathbb{E}[\theta_U(X)]$ This work: estimation of (regularized) bounds + policy learning

Application: collective utility functions

Setting: RCT or Obs. Study (i.e. ignorability + overlap)

- Covariates X, binary decision D
- Discrete potential outcomes $Y(0), Y(1); \tau = Y(1) Y(0)$
- Stochastic treatment policy $\pi(X)$

Individual expected utility under π as a stochastic intervention

$$Y(\pi(X)) = Y(0) + \pi(X) \times \tau$$

Collective utility functions to aggregate individual utilities [3]

$$V^{\lambda}(\pi) = rac{1}{\lambda} \mathbb{E}[Y(\pi(X))^{\lambda} - 1]$$

 ∞

Egalitarian rule 0 Arithmetic mean utility

 ∞ Geometric mean utility 1 Inequality-seeking

Nash cooperative bargaining value function

$$V^{N}(\pi) = \mathbb{E}[\{\tau > 0\} \log \pi(X) + \{\tau < 0\} \log(1 - \pi(X))]$$

Log-loss for positive/negative treatment effect

- Unconstrained opt: $\pi(x) = P(\tau > 0 \mid X = x, \tau \neq 0)$
- Bargaining + rationality conditions + affine invariance [4]

Goal: minimize regret relative to oracle w/knowledge of POs

- Oracle: $\pi^o = (\tau \ge 0)$; Regret $R(\pi) = V(\pi^o) V(\pi)$
- Requires knowledge of joint distribution of Y(0), Y(1)
- Margins $A\mathbf{p}(x) = \mathbf{b}(x)$; regret for PO pairs $\mathbf{c}(\pi(x))$

Find minimax regret policy $\pi^* \in \operatorname{argmin}_{\pi \in \Pi} \max V(\pi^o) - V(\pi)$

References

- [1] Vira Semenova. Aggregated Intersection Bounds and Aggregated Minimax Values. arXiv:2303.00982, 2024.
- [2] Wenlong Ji, Lihua Lei, and Asher Spector. Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects. arXiv:2310.08115, 2024.
- [3] Hervé Moulin. Axioms of Cooperative Decision Making. Cambridge, 1988.
- [4] Mamoru Kaneko and Kenjiro Nakamura. The Nash Social Welfare Function. *Econometrica*, 47(2):423–435, 1979.
- [5] Jonathan Weed. An explicit analysis of the entropic penalty in linear programming. In *Proceedings of the 31st Conference On Learning Theory*, pages 1841–1855, 2018.
- [6] Amy Finkelstein, Sarah Taubman, Bill Wright, Mira Bernstein, Jonathan Gruber, Joseph P. Newhouse, Heidi Allen, Katherine Baicker, and Oregon Health Study Group. The Oregon Health Insurance Experiment: Evidence from the First Year. *The Quarterly Journal of Economics*, 127(3):1057–1106, 2012.

De-biased estimation of bounds from conditional linear programs

Plugin basic feasible solutions

Solution in terms of optimal basis $\mathcal{B}_U^*(x) = \{i_1, \ldots, i_J\}$

$$\boldsymbol{p}_U(x) = A_{\mathcal{B}_U^*(x)}^{-1} \boldsymbol{b}(x) \Rightarrow \theta_U = \mathbb{E}\left[\langle \boldsymbol{c}(x), A_{\mathcal{B}_U^*(X)}^{-1} \boldsymbol{b}(x) \rangle\right]$$

Plugin optimal basic feasible solution:

$$\widehat{B}_U(x) \in \operatorname{argmax}_{B \in \mathcal{B}} \langle \hat{\boldsymbol{c}}(x), A_B^{-1} \hat{\boldsymbol{b}}(x) \rangle$$

• Directly read off simplex algorithm (avg polynomial time)

De-biased estimator w/plugin basic feasible solution:

$$\hat{ heta}_U = \hat{\mathbb{E}}\left[\langle \hat{m{c}}(X) + \hat{m{arphi}}_c, \hat{m{p}}_U(X)
angle + \langle \hat{m{c}}(X), A_{\widehat{B}_U(X)}^{-1} \hat{m{arphi}}_b
angle
ight]$$

Margin condition: $P(\text{best sol'n - 2nd best sol'n} \leq t) \leq t^{\alpha}$

$$\left|\mathbb{E}[\hat{ heta}_U - heta_U]\right| \lesssim \left(\|\hat{m{b}} - m{b}\|_{\infty} + \|\hat{m{c}} - m{c}\|_{\infty}\right)^{1+lpha} + o_p(n^{-1/2})$$

Entropic regularization

Entropic-regularized solution:

$$\mathbf{p}_{U}^{\eta}(x) = \underset{A\mathbf{p} = \mathbf{b}(x)}{\operatorname{argmax}} \langle \mathbf{c}(X), \mathbf{p} \rangle + \frac{1}{\eta} \operatorname{Entropy}(\mathbf{p})$$

Plugin solution in terms of dual variables d(b(x), c(x))

$$\hat{p}_U^{\eta}(x) = \exp\left(A'\boldsymbol{d}(\hat{\boldsymbol{b}}(x),\hat{\boldsymbol{c}}(x)) + \eta\hat{\boldsymbol{c}}(x)\right)$$

Strongly convex, unconstrained, fast w/Sinkhorn algo

De-biased estimator w/entropic regularized solution:

$$egin{aligned} \hat{ heta}_{\mathcal{U}}^{\eta} &= \widehat{\mathbb{E}}\left[\langle \hat{m{c}}(X) + \hat{m{arphi}}_c, \hat{m{p}}_{\mathcal{U}}^{\eta}(X)
angle \\ &+ \langle \hat{m{c}}(X),
abla_b \hat{m{p}}_{\mathcal{U}}^{\eta}(X) \hat{m{arphi}}_b +
abla_c \hat{m{p}}_{\mathcal{U}}^{\eta}(X) \hat{m{arphi}}_c
angle
ight] \end{aligned}$$

If regularization penalty $\frac{1}{n}$ is small enough^[5] relative to margin

$$\left|\mathbb{E}\left[\hat{ heta}_{U}^{\eta}- heta_{U}
ight]
ight|\lesssim e^{-\eta}+o_{p}(n^{-1/2})$$

Learning minimax regret policies

Unregularized minimax regret policy:

$$\hat{\pi} = \operatorname*{argmin} \widehat{\mathbb{E}} \left[\langle \boldsymbol{c}(\pi(X)), A_{\widehat{B}_U(X)}^{-1}(\hat{\boldsymbol{b}}(X) + \hat{\boldsymbol{arphi}}_b) \rangle \right]$$

Excess regret \lesssim Complexity $(\Pi) + \|\hat{\boldsymbol{b}} - \boldsymbol{b}\|_{\infty}^{1+\alpha}$

Regularized minimax regret policy:

$$\hat{\pi}^{\eta} = \operatorname*{argmin} \widehat{\mathbb{E}} \left[\langle oldsymbol{c}(\pi(X)), \hat{oldsymbol{
ho}}_{\mathcal{U}}^{\eta}(X) +
abla_{b} \hat{oldsymbol{
ho}}_{\mathcal{U}}^{\eta}(X) \hat{oldsymbol{arphi}}_{b}
angle
ight]$$

Excess regret \lesssim Complexity(Π) + regularization bias

Empirical illustration: Oregon health insurance experiment

Lottery for Medicaid enrollment^[6]

- X: socioeconomic + health characteristics
- D: Medicaid offer; U(d): -(# of ED visits)

Overall ITT: Medicaid offer ↑ ED visits by 12%

- Q How suboptimal was random assignment?
- Q What other targeting rules minimize maximum regret?

Collective utility function power λ — -1 — -0.5 — 0 — 0.5 — 1