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Overview

Problem: estimate expectation of unknown linear functions
see also [1, 2]

θ = E[⟨c(X ), p∗(X )⟩]

• Know J constraints on K variables p∗(x): Ap∗(x) = b(x)
• b(x) and c(x) are identifiable, and p∗(x) ≥ 0
For each value of covariates x , have pair of conditional LPs
θL(x) = min

Ap=b(x),p≥0
⟨c(x), p⟩ and θU(x) = max

Ap=b(x),p≥0
⟨c(x), p⟩

Sharp, covariate-assisted bounds: E[θL(X )] ≤ θ ≤ E[θU(X )]
This work: estimation of (regularized) bounds + policy learning

Application: collective utility functions

Setting: RCT or Obs. Study (i.e. ignorability + overlap)
• Covariates X , binary decision D
• Discrete potential outcomes Y (0), Y (1); τ = Y (1) − Y (0)
• Stochastic treatment policy π(X )
Individual expected utility under π as a stochastic intervention

Y (π(X )) = Y (0) + π(X ) × τ

Collective utility functions to aggregate individual utilities [3]

V λ(π) = 1
λ
E[Y (π(X ))λ − 1]
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Nash cooperative bargaining value function
V N(π) = E[{τ > 0} log π(X ) + {τ < 0} log(1 − π(X ))]

Log-loss for positive/negative treatment effect
• Unconstrained opt: π(x) = P(τ > 0 | X = x , τ ̸= 0)
• Bargaining + rationality conditions + affine invariance [4]

Goal: minimize regret relative to oracle w/knowledge of POs
• Oracle: πo = (τ ≥ 0); Regret R(π) = V (πo) − V (π)
• Requires knowledge of joint distribution of Y (0), Y (1)
• Margins Ap(x) = b(x); regret for PO pairs c(π(x))
Find minimax regret policy π∗ ∈ argminπ∈Π max V (πo) − V (π)
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De-biased estimation of bounds from conditional linear programs

Plugin basic feasible solutions

Solution in terms of optimal basis B∗
U(x) = {i1, . . . , iJ}

pU(x) = A−1
B∗

U(x)b(x) ⇒ θU = E
[
⟨c(x), A−1

B∗
U(X )b(x)⟩

]
Plugin optimal basic feasible solution:

B̂U(x) ∈ argmaxB∈B⟨ĉ(x), A−1
B b̂(x)⟩

• Directly read off simplex algorithm (avg polynomial time)
De-biased estimator w/plugin basic feasible solution:

θ̂U = Ê
[
⟨ĉ(X ) + φ̂c, p̂U(X )⟩ + ⟨ĉ(X ), A−1

B̂U(X )φ̂b⟩
]

Margin condition: P(best sol’n - 2nd best sol’n ≤ t) ≤ tα

∣∣∣∣E[θ̂U − θU]
∣∣∣∣ ≲ (

∥b̂ − b∥∞ + ∥ĉ − c∥∞
)1+α

+ op(n−1/2)

Entropic regularization

Entropic-regularized solution:

pη
U(x) = argmax

Ap=b(x)
⟨c(X ), p⟩ + 1

η
Entropy(p)

Plugin solution in terms of dual variables d(b(x), c(x))
p̂η

U(x) = exp
(
A′d(b̂(x), ĉ(x)) + ηĉ(x)

)
• Strongly convex, unconstrained, fast w/Sinkhorn algo
De-biased estimator w/entropic regularized solution:

θ̂η
U = Ê [⟨ĉ(X ) + φ̂c, p̂η

U(X )⟩
+ ⟨ĉ(X ), ∇bp̂η

U(X )φ̂b + ∇cp̂η
U(X )φ̂c⟩]

If regularization penalty 1
η is small enough[5] relative to margin∣∣∣∣E [

θ̂η
U − θU

]∣∣∣∣ ≲ e−η + op(n−1/2)

Learning minimax regret policies

Unregularized minimax regret policy:
π̂ = argmin

π∈Π
Ê

[
⟨c(π(X )), A−1

B̂U(X )(b̂(X ) + φ̂b)⟩
]

Excess regret ≲ Complexity(Π) + ∥b̂ − b∥1+α
∞

Regularized minimax regret policy:
π̂η = argmin

π∈Π
Ê [⟨c(π(X )), p̂η

U(X ) + ∇bp̂η
U(X )φ̂b⟩]

Excess regret ≲ Complexity(Π) + regularization bias

Empirical illustration: Oregon health insurance experiment

Lottery for Medicaid enrollment[6]

• X : socioeconomic + health characteristics
• D: Medicaid offer; U(d): -(# of ED visits)
Overall ITT: Medicaid offer ↑ ED visits by 12%
Q How suboptimal was random assignment?
Q What other targeting rules minimize maximum regret? 0.01 0.10 1.00
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Empirical Illustration

Oregon Health Insurance Experiment
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