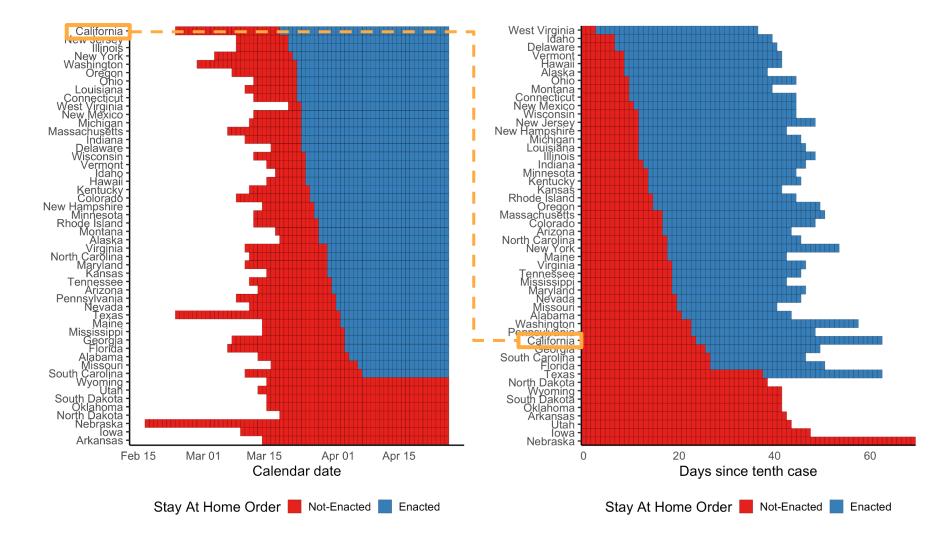

A trial emulation approach for policy evaluations with group-level longitudinal data

> Eli Ben-Michael, Avi Feller, & Elizabeth Stuart (UC Berkeley and Johns Hopkins) APPAM 2020

Evaluating non-pharmaceutical interventions is hard

State governments passed extraordinary NPIs in spring 2020

→ Important to evaluate impact, but many methodological challenges


A stylized analysis:

- Measure the effect of stay-at-home orders on the course of the pandemic
- Data from the NYT tracker

The elements of "policy trial emulation"

Several steps, none of them straightforward!

Units and exposures	Causal contrasts	Outcomes	Time zero
 Multiple types of stay at home orders Limited effect of orders Spillovers and contagion 	 Intent to treat Orders can start and stop Focus on policies "turning on" 	 Important for parallel trends Cumulative effect? Day-to-day changes? Data quality? 	 What is "pre- treatment" What is "post- treatment" Can add as much bias as confounding!

A single target trial

Differences in Differences

Focus on a single *cohort* of states

 5 states that passed stay at home orders on March 23rd

Length of follow up

- Only 19 days between first and last adopters
- Expect effects to be delayed

Compare to 8 *never treated* states

Dynamic comparison groups?

- Need to assess parallel trends for all groups
- Are changes in effects just changes in comparison group?

	Stay-at-Home Order		
	Pre	Post	Difference
March 23 Cohort	0.31 (37%)	0.09 (10%)	-0.22 (-20%)
Never Treated Cohort	0.24 (27%)	0.10 (11%)	-0.14 (-12%)
Difference	+0.07 (+10%)	-0.01 (-1%)	-0.08 (-8%)

Key assumption: parallel trends!

Violated by

1. Anticipation

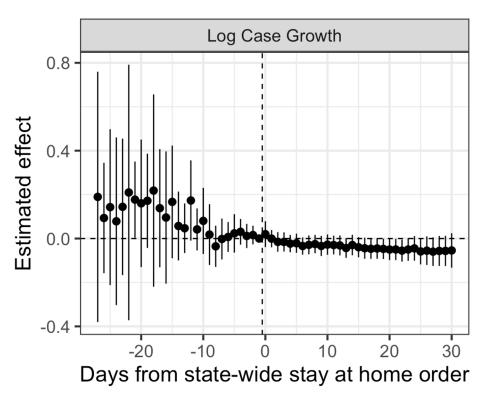
Did behavior change before the order?

[Goolsbee & Syverson 2020]

1. Time varying confounding

Were orders a response to trends in cases?

From single to nested target trials


2x2 DiD is blunt

- Averages over entire post-period
- Dynamic DiD
 - Use a reference date as "pre" for all other "post" dates

Nested target trials combine target trials

- Different starting points, follow-up length [Hernán et al 2016]
- Aggregate across cohorts by days since treatment
- AKA "Stacking"

[Abraham & Sun 2020; Callaway & Sant'Anna 2020]

Recap

The elements of policy trial emulation

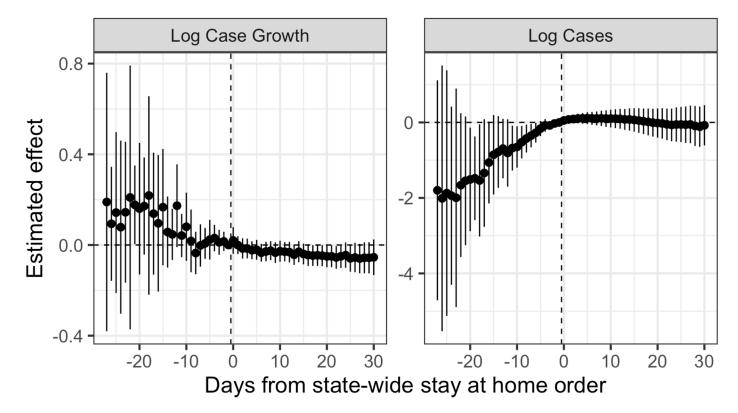
- 1. Define units and exposures
- 2. Define causal contrasts of interest
- 3. Define outcomes
- 4. Define time zero

Nested target trials and DiD

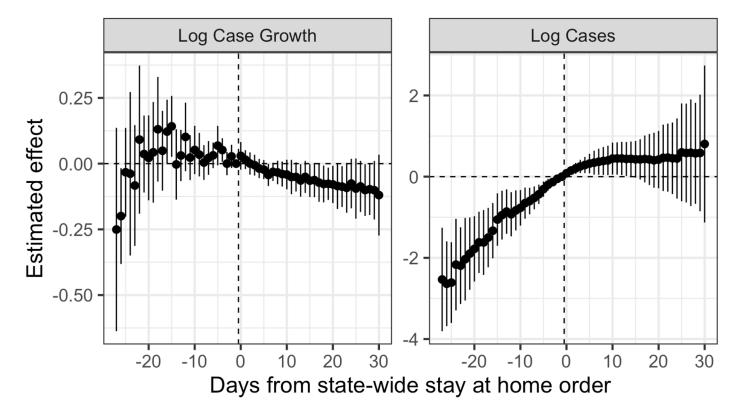
- Begin with a single cohort
- Aggregate across cohorts over event time

Thank you!

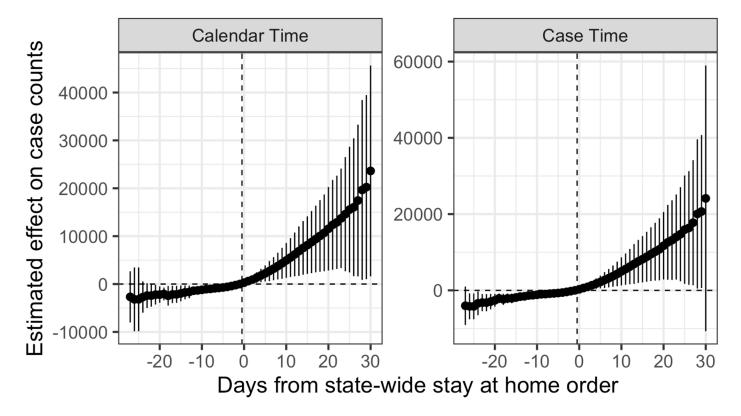
ebenmichael.github.io

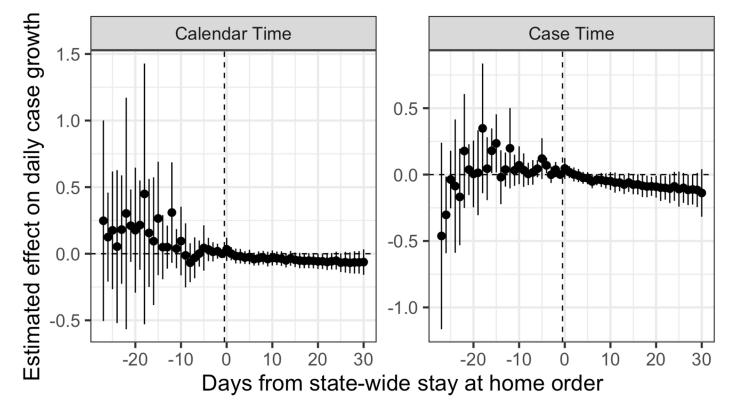

Paper forthcoming at Epidemiology

On arXiv now



Additional Figures


Calendar time estimates


Case time estimates

Effect on raw case counts

Effect on raw case growth

References

- Abraham S, Liyang Sun L. Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects. arXiv:1804.05785. 2020
- Callaway B and Sant'Anna Pedro HC. Difference-in-Differences with Multiple Time Periods. 2020
- Danaei G, García Rodríguez LA, Cantero OF, Logan RW, Hernán MA. Electronic medical records can be used to emulate target trials of sustained treatment strategies. Journal of Clinical Epidemiology. 2018;96:12-22. doi:10.1016/j.jclinepi.2017.11.02
- Dickerman BA, García-Albéniz X, Logan RW, Denaxas S, Hernan MA. Avoidable flaws in observational analyses: an application to statins and cancer. Nature Medicine. 2019; 25, 1601–1606. https://doi.org/10.1038/s41591-019-0597-x [5][19]
- Goolsbee A, Syverson C. Fear, Lockdown, and Diversion: Comparing Drivers of Pandemic Economic Decline 2020 NBER Working Paper. 2020; 27432. June JEL No. E6, H7, L51
- Hernán MA, Sauer BC, Hernández-Díaz S, Platt R, Shrier I. Specifying a target trial prevents immortal time bias and other selfinflicted injuries in observational analyses. Journal of Clinical Epidemiology. 2016; 79, 70–75.
- The New York Times. Coronavirus (Covid-19) Data in the United States. Accessed August 2, 2020. https://github.com/nytimes/covid-19-data/blob/master/README.md