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Rule-based policies — i.e. algorithms — show up everywhere

[Ludwig and Miller, 2007]

[Morse, 2019]
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Rule-based policies — i.e. algorithms — show up everywhere

Algorithmic policies are in many organizational levels
– Guiding high-level policies
– Aiding human decision makers with discretion

Often based on known, deterministic rules
– Transparency and interpretability gives accountability

We study the effects of policies all the time

[Dell and Querubin, 2018]

But how can we improve the underlying rules and algorithms?
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Goals and contributions

We know how to evaluate local effects of deterministic rules (e.g. RDD)
– To learn new rules we need to extrapolate from the existing status quo rule
– In some special cases we can extrapolate uniquely [Angrist and Rokkanen, 2015; Cattaneo et al., 2020]

– In general there are many ways to extrapolate from one dataset, so need to be careful!
[King and Zeng, 2006]

This paper: a safe extrapolation approach to learning rule-based policies
– Characterize all of the ways to extrapolate under assumptions on the model
– Then find the best policy in the worst case
– Guaranteed to be at least as good as the status quo in terms of average utility
– Incorporates uncertainty from both extrapolation and noise

Apply this methodology to pre-trial risk assessment algorithms
– Robust algorithms learn to classify fewer arrestees as risky
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Outline

1. Background on pre-trial risk assessment algorithms

2. Methodological framework for learning new rule-based policies

3. Results when applied to pre-trial risk assessment
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Pre-Trial Risk Assessment



First appearance hearings
– Judge decides pre-trial release conditions
– Cash bail? How much? Monitoring?
– Short, many in one day

Judges balance between
– Risk of new crime or failing to appear
– Costs of pre-trial detention to arrestee, community

Assessment scores designed to help judges
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The PSA-DMF System
Public Safety Assessment (PSA) classifies 3 risks
1. Failure To Appear in court (FTA)
2. New Criminal Activity (NCA)
3. New Violent Criminal Activity (NVCA)

Decision Making Framework (DMF) combines scores for bail recommendation
– Signature bond vs. cash bail

Millions of people across 19 states live in jurisdictions that use the PSA-DMF system

Two goals: minimize pre-trial detention and NVCAs
– Ideally, no detentions and no NVCAs
– The amount of weight we apply to these two goals will be important
– This is different from predicting NVCAs well
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We want to change the NVCA threshold and how points are assigned
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Also want to change the boundary for the cash bail recommendation
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A randomized control trial evaluating pre-trial risk assessment
Ideal randomized experiment: randomize the algorithm’s output

– Randomly flag arrestees as NVCA risk and randomly recommend cash bail
– This is totally unethical!

Instead, use a unique RCT developed to evaluate the algorithms
[Greiner et al., 2020; Imai et al., 2020]

– 1891 arrests in Dane County, WI 2017-2019, 2-year-follow-up for half the sample

– Randomly make scores and recommendations available to judges

We’ll use this data to learn a better algorithm, rather than evaluate the existing one
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Algorithm Inputs

Risk Assessment Judge Decision

Release

NVCA

Socioeconomic/Other Factors

Unobserved Case Details

Past Data

Judge Experiences
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Suggestive but inconclusive evidence that PSA content has effects
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Safe Policy Learning
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Setup

For each individual i, observe
– Covariates Xi ∈ X e.g. pre-computed risk scores or criminal history

– Action taken Ai ∈ A = {0,1} e.g. trigger NVCA flag or recommend cash bail

– Binary outcome Yi ∈ {0,1} no NVCA occurring

Deterministic status quo policy π̃, where Ai = π̃(Xi)

Don’t observe potential outcome under action a, Y(a)
– Conditional expectationm(a, x) = E[Y(a) | X = x]

Observed outcomes are

Yi =
{

Yi(0), π̃(Xi) = 0
Yi(1), π̃(Xi) = 1

π̃(Xi) = 0 π̃(Xi) = 1
Yi(0) Yi ?
Yi(1) ? Yi
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To find the optimal algorithmic policy, we need counterfactual information

Our goal: Find a policy with high expected utility (value/welfare)

V(π,m) = E [benefit×m(π(X),X)− cost× π(X)]

– This is not a prediction problem, it involves consequences of actions
– Costs and benefits determine the objective
– In the paper: include Judge’s decisions into utility

But how do we impute the counterfactuals?

Existing work uses stochastic policies for identification
[e.g. Qian and Murphy, 2011; Zhao et al., 2012; Kitagawa and Tetenov, 2018; Athey and Wager, 2021]

– Inverse probability weighting or model-based imputation

Deterministic policies −→many ways to extrapolate and impute the counterfactual
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Rather than choose one particular imputation, optimize for the worst case
We partially identify the modelm ∈ M, then find the best policy in the worst case

πinf ∈ argmax
π∈Π

min
m∈M

V(π,m)

– A robust optimization approach [Bertsimas et al., 2011; Kallus and Zhou, 2021; Pu and Zhang, 2021]

– In the paper: with an RCT use effect relative to no policy instead of outcomes
Many model assumptions result in point-wise bounds

Bℓ(a, x) ≤ m(a, x) ≤ Bu(a, x)

– Lipschitz functions, additive models, linear models
– Similar assumptions on outcomes as RD, but globally

Easy to compute!
– Plug in the worst-case bound [Pu and Zhang, 2021]

min
m∈M

V(π,m) = V(π,Bℓ)
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This is a safe policy that is at least as good as the status quo on average

The value of πinf is at least as high as the status quo

V (π̃)− V
(
πinf

)
≤ 0

Allows policy makers to know things won’t get worse
– Too much uncertainty −→ Fall back on status quo
– Conservative, “pessimistic” principle [Cui, 2021]

Many other possible objectives in this framework
[Manski, 2005]

– Possibly also ensure safety for subgroups individually
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The safe policy is sub-optimal, but we can bound how much

Compare to the best possible policy

π∗ ∈ argmaxπ∈ΠV(π)

Optimality gap controlled by size ofM

V (π∗)− V
(
πinf

)
≤ uE

[
max
a∈A

Bu(a,X)− Bℓ(a,X)
]

– Tighter partial identification −→ better policy
– If we can extrapolate uniquely, πinf is also optimal
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To find the safe policy empirically from data, we need to account for noise

Construct a 1− α confidence set M̂n(α)

P
(
M ∈ M̂n(α)

)
≥ 1− α

Empirical welfare maximization problem with
imputed counterfactuals Υ̂i(a)

π̂ ∈ argmax
π∈Π

1
n

n∑
i=1

benefit×Υ̂i(π(Xi))−cost×π(Xi)

Gives a statistical safety guarantee
– Approximately holds with prob. ≥ 1− α

– Tradeoff between level α and tighter bounds
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Learning a new PSA-DMF system



Learning a new NVCA Flag: choosing the algorithm
Construct a new NVCA flag using the same risk factors and structure

– Change the threshold but keep the number of points assigned to each factor fixed
– Change the number of points assigned to each factor but keep the threshold fixed
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How do we weigh the costs of flagging arrestees vs an NVCA?

Define utility based on triggering the flag and whether NVCA occurs
– Monetary cost of triggering the flag is zero
– But fiscal costs on jurisdiction and social and economic costs on individual and community
– Presumption of innocence, so limit pre-trial detention

Use a single parameterization:

NVCA Cost× Y(a)− π(a)

– Pin fiscal and societal costs to be 1
– Cost of an NVCA starts at 1 and grows
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Robust approach raises the NVCA risk threshold
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Robust approach places less weight on violent convictions and triggers flag less
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Effect = f1(current violent offense) + f2(prior violent convictions) + . . .
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With an additive model we can identify a slice of the DMF matrix...
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...but we can’t reliably learn a new algorithm when accounting for statistical noise
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Recap: Safe policy learning through extrapolation

Deterministic rule-based and algorithmic policies are everywhere
– Generate a lot of data! But deterministic nature means we have to extrapolate

This paper: Extrapolate in a safe way with robust optimization to learn a new algorithm
– Characterize all of the ways to extrapolate and find the best policy in the worst case
– Gives a statistical safety guarantee: at least as good as the status quo
– Some evidence we can improve the PSA, but noisy. Need more data!

Many more questions on designing algorithms to assist human decision makers
– Asymmetric utility functions lead to unidentifiable objectives
– Incorporating fairness and alternative notions of “safety”
– Optimizing for long term outcomes when we only can measure short term outcomes
– Learning policies when human decisions mediate future outcomes and decisions
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Thank you!
ebenmichael.github.io

http://ebenmichael.github.io
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Cash Bail and NVCAs are less common
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Frequency of attributes entering the NVCA Flag
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FTA and NCA scores move in unison
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Additive treatment effects are at the sweetspot of robustness and optimality

Second Order Outcome Model Second Order Effect Model
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Robust approach changes scores to trigger NVCA flag less often
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Incorporating experiments and human decisions
Incorporating experiments evaluating a deterministic policy

– In our study, judges randomly receive the “null policy” ∅, no access to PSA

Allows us to work with treatment effects instead of outcomes

τ(a, x) = E[Y(a)− Y(∅) | X = x]

– Treatment effects are often considered to be simpler than baseline outcomes
[Künzel et al., 2019; Hahn et al., 2020; Nie and Wager, 2021]

Incorporating judge decisions from algorithmic recommendations
– Define utility based on potential decision D(a) and potential outcome Y(D(a))

benefit× Y(D(a))− cost×D(a)

Value includes two unidentified components, outcomes and decisions
– Need to find the worst case potential decision and outcome for cost and benefit
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Statistical properties

Value is probably, approximately at least as high as baseline

V(π̃)− V(π̂) ≲ Complexity(Π) with probability at least ≳ 1− α

– Conservative approach gives a statistical safety guarantee with level α
– If policy class Π is complex, need more samples to avoid overfitting

Empirical optimality gap controlled by size of M̂n(α) and complexity of Π

V(π∗)− V(π̂) ≲ u
n

n∑
i=1

max
a∈A

B̂αu(a,Xi)− B̂αℓ(a,Xi) + Complexity(Π)

with probability at least ≳ 1− α

– Tradeoff between safety and optimality
7 / 10
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