Safe Policy Learning through Extrapolation

Application to Pre-trial Risk Assessment

Eli Ben-Michael

Harvard University

(joint work with Kosuke Imai, Jim Greiner, and Zhichao Jiang)

Berkeley Machine Learning and Science Forum
December 2021

Panel A: 1968 Head Start funding per 4 year old

[Ludwig and Miller, 2007]

Panel A: 1968 Head Start funding per 4 year old

[Ludwig and Miller, 2007]

Algorithmic policies are in many organizational levels

- Guiding high-level policies
- Aiding human decision makers with discretion

[Dell and Querubin, 2018]

Algorithmic policies are in many organizational levels

- Guiding high-level policies
- Aiding human decision makers with discretion

Often based on known, **deterministic** rules

- Transparency and interpretability gives accountability

[Dell and Querubin, 2018]

Algorithmic policies are in many organizational levels

- Guiding high-level policies
- Aiding human decision makers with discretion

Often based on known, **deterministic** rules

- Transparency and interpretability gives accountability

We study the effects of policies all the time

[Dell and Querubin, 2018]

Algorithmic policies are in many organizational levels

- Guiding high-level policies
- Aiding human decision makers with discretion

Often based on known, deterministic rules

- Transparency and interpretability gives accountability

We study the effects of policies all the time

[Dell and Querubin, 2018]

But how can we **improve** the underlying rules and algorithms?

Goals and contributions

We know how to evaluate local effects of deterministic rules (e.g. RDD)

- To learn new rules we need to extrapolate from the existing status quo rule
- In some special cases we can extrapolate uniquely [Angrist and Rokkanen, 2015; Cattaneo et al., 2020]
- In general there are many ways to extrapolate from one dataset, so need to be careful! [King and Zeng, 2006]

Goals and contributions

We know how to evaluate local effects of deterministic rules (e.g. RDD)

- To learn new rules we need to extrapolate from the existing status quo rule
- In some special cases we can extrapolate uniquely [Angrist and Rokkanen, 2015; Cattaneo et al., 2020]
- In general there are many ways to extrapolate from one dataset, so need to be careful! [King and Zeng, 2006]

This paper: a safe extrapolation approach to learning rule-based policies

- Characterize all of the ways to extrapolate under assumptions on the model
- Then find the best policy in the worst case
- Guaranteed to be at least as good as the status quo in terms of average utility
- Incorporates uncertainty from both extrapolation and noise

Goals and contributions

We know how to evaluate local effects of deterministic rules (e.g. RDD)

- To learn new rules we need to extrapolate from the existing status quo rule
- In some special cases we can extrapolate uniquely [Angrist and Rokkanen, 2015; Cattaneo et al., 2020]
- In general there are many ways to extrapolate from one dataset, so need to be careful! [King and Zeng, 2006]

This paper: a safe extrapolation approach to learning rule-based policies

- Characterize all of the ways to extrapolate under assumptions on the model
- Then find the best policy in the worst case
- Guaranteed to be at least as good as the status quo in terms of average utility
- Incorporates uncertainty from both extrapolation and noise

Apply this methodology to pre-trial risk assessment algorithms

- Robust algorithms learn to classify fewer arrestees as risky

Outline

- 1. Background on pre-trial risk assessment algorithms
- 2. Methodological framework for learning new rule-based policies
- 3. Results when applied to pre-trial risk assessment

Pre-Trial Risk Assessment

First appearance hearings

- Judge decides pre-trial release conditions
- Cash bail? How much? Monitoring?
- Short, many in one day

First appearance hearings

- Judge decides pre-trial release conditions
- Cash bail? How much? Monitoring?
- Short, many in one day

Judges balance between

- Risk of new crime or failing to appear
- Costs of pre-trial detention to arrestee, community

First appearance hearings

- Judge decides pre-trial release conditions
- Cash bail? How much? Monitoring?
- Short, many in one day

Judges balance between

- Risk of new crime or failing to appear
- Costs of pre-trial detention to arrestee, community

Assessment scores designed to help judges

Public Safety Assessment (PSA) classifies 3 risks

- 1. Failure To Appear in court (FTA)
- 2. New Criminal Activity (NCA)
- 3. New Violent Criminal Activity (NVCA)

Public Safety Assessment (PSA) classifies 3 risks

- 1. Failure To Appear in court (FTA)
- 2. New Criminal Activity (NCA)
- 3. New Violent Criminal Activity (NVCA)

Decision Making Framework (DMF) combines scores for bail recommendation

- Signature bond vs. cash bail

Public Safety Assessment (PSA) classifies 3 risks

- 1. Failure To Appear in court (FTA)
- 2. New Criminal Activity (NCA)
- 3. New Violent Criminal Activity (NVCA)

Decision Making Framework (DMF) combines scores for bail recommendation

- Signature bond vs. cash bail

Millions of people across 19 states live in jurisdictions that use the PSA-DMF system

Public Safety Assessment (PSA) classifies 3 risks

- 1. Failure To Appear in court (FTA)
- 2. New Criminal Activity (NCA)
- 3. New Violent Criminal Activity (NVCA)

Decision Making Framework (DMF) combines scores for bail recommendation

- Signature bond vs. cash bail

Millions of people across 19 states live in jurisdictions that use the PSA-DMF system

Two goals: minimize pre-trial detention and NVCAs

- Ideally, no detentions and no NVCAs
- The amount of weight we apply to these two goals will be important
- This is different from predicting NVCAs well

Recommendations:

Release Recommendation - Signature bond

Conditions - Report to and comply with pretrial supervision

New Violent Criminal Arrest: Points		
PSA FACTOR	RESPONSE	POINTS
Current violent offense	No	0
	Yes	2
Current violent offense and 20 years old or younger	No	0
	Yes	1
Pending charge at the time of arrest	No	o
	Yes	1
Prior conviction (misdemeanor or felony)	No	o
	Yes	1
Prior violent conviction	No	0
	Yes, 1 or 2	1
	Yes, 3 or more	2

We want to change the NVCA threshold and how points are assigned

Also want to change the boundary for the cash bail recommendation

PSA Recommendation Signature Bond Cash Bail

Also want to change the boundary for the cash bail recommendation

PSA Recommendation Signature Bond Cash Bail

Ideal randomized experiment: randomize the algorithm's output

- Randomly flag arrestees as NVCA risk and randomly recommend cash bail
- This is totally unethical!

Ideal randomized experiment: randomize the algorithm's output

- Randomly flag arrestees as NVCA risk and randomly recommend cash bail
- This is totally unethical!

Instead, use a unique RCT developed to evaluate the algorithms

[Greiner et al., 2020; Imai et al., 2020]

- 1891 arrests in Dane County, WI 2017-2019, 2-year-follow-up for half the sample
- Randomly make scores and recommendations available to judges

Ideal randomized experiment: randomize the algorithm's output

- Randomly flag arrestees as NVCA risk and randomly recommend cash bail
- This is totally unethical!

Instead, use a unique RCT developed to evaluate the algorithms

[Greiner et al., 2020; Imai et al., 2020]

- 1891 arrests in Dane County, WI 2017-2019, 2-year-follow-up for half the sample
- Randomly make scores and recommendations available to judges

Ideal randomized experiment: randomize the algorithm's output

- Randomly flag arrestees as NVCA risk and randomly recommend cash bail
- This is totally unethical!

Instead, use a unique RCT developed to evaluate the algorithms

[Greiner et al., 2020; Imai et al., 2020]

- 1891 arrests in Dane County, WI 2017-2019, 2-year-follow-up for half the sample
- Randomly make scores and recommendations available to judges

Ideal randomized experiment: randomize the algorithm's output

- Randomly flag arrestees as NVCA risk and randomly recommend cash bail
- This is totally unethical!

Instead, use a unique RCT developed to evaluate the algorithms

[Greiner et al., 2020; Imai et al., 2020]

- 1891 arrests in Dane County, WI 2017-2019, 2-year-follow-up for half the sample
- Randomly make scores and recommendations available to judges

We'll use this data to learn a better algorithm, rather than evaluate the existing one

Suggestive but inconclusive evidence that PSA content has effects

Safe Policy Learning

$$|f(a) - f(b)| \le \lambda |a - b|$$

$$|f(a) - f(b)| \le \lambda |a - b|$$

$$|f(a) - f(b)| \le \lambda |a - b|$$

$$|f(a) - f(b)| \le \lambda |a - b|$$

Setup

For each individual i, observe

- Covariates $X_i \in \mathcal{X}$ e.g. pre-computed risk scores or criminal history
- Action taken $A_i \in \mathcal{A} = \{0,1\}$ e.g. trigger NVCA flag or recommend cash bail
- Binary outcome $Y_i \in \{0,1\}$ no NVCA occurring

Deterministic status quo policy $\tilde{\pi}$, where $A_i = \tilde{\pi}(X_i)$

Setup

For each individual i, observe

- $\mathsf{Covariates}\, X_i \in \mathcal{X}$ e.g. pre-computed risk scores or criminal history
- Action taken $A_i \in \mathcal{A} = \{0,1\}$ e.g. trigger NVCA flag or recommend cash bail
- Binary outcome $Y_i \in \{0,1\}$ no NVCA occurring

Deterministic status quo policy $\tilde{\pi}$, where $A_i = \tilde{\pi}(X_i)$

Don't observe potential outcome under action a, Y(a)

- Conditional expectation $m(a,x) = \mathbb{E}[Y(a) \mid X = x]$

Setup

For each individual i, observe

- Covariates $X_i \in \mathcal{X}$ e.g. pre-computed risk scores or criminal history
- Action taken $A_i \in \mathcal{A} = \{0,1\}$ e.g. trigger NVCA flag or recommend cash bail
- Binary outcome $Y_i \in \{0,1\}$ no NVCA occurring

Deterministic status quo policy $\tilde{\pi}$, where $A_i = \tilde{\pi}(X_i)$

Don't observe potential outcome under action a, Y(a)

- Conditional expectation $m(a,x) = \mathbb{E}[Y(a) \mid X = x]$

Observed outcomes are

$$Y_i = \begin{cases} Y_i(0), & \tilde{\pi}(X_i) = 0 \\ Y_i(1), & \tilde{\pi}(X_i) = 1 \end{cases}$$

$$\begin{array}{c|cccc} & \tilde{\pi}(X_i) = 0 & \tilde{\pi}(X_i) = 1 \\ \hline Y_i(0) & Y_i & ? \\ Y_i(1) & ? & Y_i \end{array}$$

Our goal: Find a policy with high **expected utility** (value/welfare)

$$V(\pi, m) = \mathbb{E}\left[\text{benefit} \times m(\pi(X), X) - \text{cost} \times \pi(X)\right]$$

- This is **not a prediction problem**, it involves consequences of actions
- Costs and benefits determine the objective
- In the paper: include Judge's decisions into utility

Our goal: Find a policy with high **expected utility** (value/welfare)

$$V(\pi, m) = \mathbb{E} \left[\text{benefit} \times m(\pi(X), X) - \text{cost} \times \pi(X) \right]$$

- This is **not a prediction problem**, it involves consequences of actions
- Costs and benefits determine the objective
- In the paper: include Judge's decisions into utility

But how do we impute the counterfactuals?

Our goal: Find a policy with high **expected utility** (value/welfare)

$$V(\pi, m) = \mathbb{E} \left[\text{benefit} \times m(\pi(X), X) - \text{cost} \times \pi(X) \right]$$

- This is **not a prediction problem**, it involves consequences of actions
- Costs and benefits determine the objective
- In the paper: include Judge's decisions into utility

But how do we impute the counterfactuals?

Existing work uses **stochastic** policies for identification

[e.g. Qian and Murphy, 2011; Zhao et al., 2012; Kitagawa and Tetenov, 2018; Athey and Wager, 2021]

- Inverse probability weighting or model-based imputation

Our goal: Find a policy with high **expected utility** (value/welfare)

$$V(\pi, m) = \mathbb{E} \left[\text{benefit} \times m(\pi(X), X) - \text{cost} \times \pi(X) \right]$$

- This is **not a prediction problem**, it involves consequences of actions
- Costs and benefits determine the objective
- In the paper: include Judge's decisions into utility

But how do we impute the counterfactuals?

Existing work uses **stochastic** policies for identification

[e.g. Qian and Murphy, 2011; Zhao et al., 2012; Kitagawa and Tetenov, 2018; Athey and Wager, 2021]

- Inverse probability weighting or model-based imputation

Deterministic policies \longrightarrow many ways to extrapolate and impute the counterfactual

Rather than choose one particular imputation, optimize for the worst case

We partially identify the model $m \in \mathcal{M}$, then find the best policy in the worst case

Rather than choose one particular imputation, optimize for the worst case

We partially identify the model $m \in \mathcal{M}$, then find the best policy in the worst case

$$\pi^{\inf} \in \operatorname*{argmax} \min_{\pi \in \Pi} V(\pi, m)$$

- A robust optimization approach [Bertsimas et al., 2011; Kallus and Zhou, 2021; Pu and Zhang, 2021]
- In the paper: with an RCT use effect relative to no policy instead of outcomes

Rather than choose one particular imputation, optimize for the worst case

We partially identify the model $m \in \mathcal{M}$, then find the best policy in the worst case

$$\pi^{\inf} \in \operatorname*{argmax\,min}_{\pi \in \Pi} V(\pi, m)$$

- A robust optimization approach [Bertsimas et al., 2011; Kallus and Zhou, 2021; Pu and Zhang, 2021]
- In the paper: with an RCT use effect relative to no policy instead of outcomes

Many model assumptions result in point-wise bounds

$$B_{\ell}(a,x) \leq m(a,x) \leq B_{u}(a,x)$$

- Lipschitz functions, additive models, linear models
- Similar assumptions on outcomes as RD, but globally

Easy to compute!

- Plug in the worst-case bound [Pu and Zhang, 2021]

$$\min_{m \in \mathcal{M}} V(\pi, m) = V(\pi, B_{\ell})$$

The value of π^{\inf} is at least as high as the status quo

$$V(\tilde{\pi}) - V(\pi^{\inf}) \leq 0$$

The value of π^{\inf} is at least as high as the status quo

$$V(\tilde{\pi}) - V(\pi^{\mathsf{inf}}) \leq 0$$

The value of π^{\inf} is at least as high as the status quo

$$V(\tilde{\pi}) - V(\pi^{\inf}) \leq 0$$

Allows policy makers to know things won't get worse

- Too much uncertainty → Fall back on status quo
- Conservative, "pessimistic" principle [Cui, 2021]

The value of π^{\inf} is at least as high as the status quo

$$V(\tilde{\pi}) - V(\pi^{\inf}) \leq 0$$

Allows policy makers to know things won't get worse

- Too much uncertainty → Fall back on status quo
- Conservative, "pessimistic" principle [Cui, 2021]

Many other possible objectives in this framework [Manski, 2005]

- Possibly also ensure safety for subgroups individually

Compare to the best possible policy

 $\pi^* \in \operatorname{argmax}_{\pi \in \Pi} V(\pi)$

Compare to the best possible policy

$$\pi^* \in \operatorname{argmax}_{\pi \in \Pi} V(\pi)$$

Optimality gap controlled by size of \mathcal{M}

$$V(\pi^*) - V(\pi^{\inf}) \le u \mathbb{E}\left[\max_{a \in \mathcal{A}} B_u(a, X) - B_{\ell}(a, X)\right]$$

- Tighter partial identification → better policy
- If we can extrapolate uniquely, π^{\inf} is also optimal

Compare to the best possible policy

$$\pi^* \in \operatorname{argmax}_{\pi \in \Pi} V(\pi)$$

Optimality gap controlled by size of M

$$V(\pi^*) - V(\pi^{\inf}) \le u \mathbb{E}\left[\max_{a \in \mathcal{A}} B_u(a, X) - B_{\ell}(a, X)\right]$$

- Tighter partial identification → better policy
- If we can extrapolate uniquely, π^{\inf} is also optimal

Compare to the best possible policy

$$\pi^* \in \operatorname{argmax}_{\pi \in \Pi} V(\pi)$$

Optimality gap controlled by size of \mathcal{M}

$$V(\pi^*) - V(\pi^{\inf}) \le u \mathbb{E}\left[\max_{a \in \mathcal{A}} \frac{B_u(a, X) - B_\ell(a, X)}{B_\ell(a, X)}\right]$$

- Tighter partial identification → better policy
- If we can extrapolate uniquely, π^{\inf} is also optimal

To find the safe policy empirically from data, we need to account for noise

Construct a $1 - \alpha$ confidence set $\widehat{\mathcal{M}}_n(\alpha)$

$$P\left(\mathcal{M} \in \widehat{\mathcal{M}}_n(\alpha)\right) \geq 1 - \alpha$$

To find the safe policy empirically from data, we need to account for noise

Construct a $1 - \alpha$ confidence set $\widehat{\mathcal{M}}_n(\alpha)$

$$P\left(\mathcal{M}\in\widehat{\mathcal{M}}_n(\alpha)\right)\geq 1-\alpha$$

Empirical welfare maximization problem with imputed counterfactuals $\widehat{\Upsilon}_i(a)$

$$\hat{\pi} \in \underset{\pi \in \Pi}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} \operatorname{benefit} \times \widehat{\Upsilon}_{i}(\pi(X_{i})) - \operatorname{cost} \times \pi(X_{i})$$

To find the safe policy empirically from data, we need to account for noise

Construct a $1 - \alpha$ confidence set $\widehat{\mathcal{M}}_n(\alpha)$

$$P\left(\mathcal{M}\in\widehat{\mathcal{M}}_n(\alpha)\right)\geq 1-\alpha$$

Empirical welfare maximization problem with imputed counterfactuals $\widehat{\Upsilon}_i(a)$

$$\hat{\pi} \in \underset{\pi \in \Pi}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} \operatorname{benefit} \times \widehat{\Upsilon}_{i}(\pi(X_{i})) - \operatorname{cost} \times \pi(X_{i})$$

Gives a statistical safety guarantee

- Approximately holds with prob. $\geq 1 \alpha$
- Tradeoff between level lpha and tighter bounds

Learning a new PSA-DMF system

Learning a new NVCA Flag: choosing the algorithm

Construct a new NVCA flag using the same risk factors and structure

Learning a new NVCA Flag: choosing the algorithm

Construct a new NVCA flag using the same risk factors and structure

- Change the threshold but keep the number of points assigned to each factor fixed

Learning a new NVCA Flag: choosing the algorithm

Construct a new NVCA flag using the same risk factors and structure

- Change the threshold but keep the number of points assigned to each factor fixed
- Change the number of points assigned to each factor but keep the threshold fixed

How do we weigh the costs of flagging arrestees vs an NVCA?

Define utility based on triggering the flag and whether NVCA occurs

- Monetary cost of triggering the flag is zero
- But fiscal costs on jurisdiction and social and economic costs on individual and community
- Presumption of innocence, so limit pre-trial detention

How do we weigh the costs of flagging arrestees vs an NVCA?

Define utility based on triggering the flag and whether NVCA occurs

- Monetary cost of triggering the flag is zero
- But fiscal costs on jurisdiction and social and economic costs on individual and community
- Presumption of innocence, so limit pre-trial detention

Use a single parameterization:

NVCA Cost
$$\times$$
 $Y(a) - \pi(a)$

- Pin fiscal and societal costs to be 1
- Cost of an NVCA starts at 1 and grows

Robust approach places less weight on violent convictions and triggers flag less

Effect = f_1 (current violent offense) + f_2 (prior violent convictions) + . . .

Robust approach places less weight on violent convictions and triggers flag less

Effect = f_1 (current violent offense) + f_2 (prior violent convictions) + . . .

Robust approach places less weight on violent convictions and triggers flag less

Effect = f_1 (current violent offense) + f_2 (prior violent convictions) + . . .

With an additive model we can identify a slice of the DMF matrix...

 $Effect = f_1 (FTA Score) + f_2 (NCA Score)$

With an additive model we can identify a slice of the DMF matrix...

 $Effect = f_1 (FTA Score) + f_2 (NCA Score)$

With an additive model we can identify a slice of the DMF matrix...

 $Effect = f_1 (FTA Score) + f_2 (NCA Score)$

Recap: Safe policy learning through extrapolation

Deterministic rule-based and algorithmic policies are everywhere

- Generate a lot of data! But deterministic nature means we have to extrapolate

Recap: Safe policy learning through extrapolation

Deterministic rule-based and algorithmic policies are everywhere

- Generate a lot of data! But deterministic nature means we have to extrapolate

This paper: Extrapolate in a safe way with robust optimization to learn a new algorithm

- Characterize all of the ways to extrapolate and find the best policy in the worst case
- Gives a statistical safety guarantee: at least as good as the status quo
- Some evidence we can improve the PSA, but noisy. Need more data!

Recap: Safe policy learning through extrapolation

Deterministic rule-based and algorithmic policies are everywhere

- Generate a lot of data! But deterministic nature means we have to extrapolate

This paper: Extrapolate in a safe way with robust optimization to learn a new algorithm

- Characterize all of the ways to extrapolate and find the best policy in the worst case
- Gives a statistical safety guarantee: at least as good as the status quo
- Some evidence we can improve the PSA, but noisy. Need more data!

Many more questions on designing algorithms to assist human decision makers

- Asymmetric utility functions lead to unidentifiable objectives
- Incorporating fairness and alternative notions of "safety"
- Optimizing for long term outcomes when we only can measure short term outcomes
- Learning policies when human decisions mediate future outcomes and decisions

Thank you!

ebenmichael.github.io

Appendix

Cash Bail and NVCAs are less common

Frequency of attributes entering the NVCA Flag

FTA and NCA scores move in unison

Additive treatment effects are at the sweetspot of robustness and optimality

Robust approach changes scores to trigger NVCA flag less often

Effect = f_1 (current violent offense) + f_2 (prior violent convictions) + ...

Incorporating experiments and human decisions

Incorporating experiments evaluating a deterministic policy

- In our study, judges randomly receive the "null policy" Ø, no access to PSA

Allows us to work with treatment effects instead of outcomes

$$\tau(a,x) = \mathbb{E}[Y(a) - Y(\emptyset) \mid X = x]$$

 Treatment effects are often considered to be simpler than baseline outcomes [Künzel et al., 2019; Hahn et al., 2020; Nie and Wager, 2021]

Incorporating judge decisions from algorithmic recommendations

- Define utility based on potential decision D(a) and potential outcome Y(D(a))

benefit
$$\times Y(D(a)) - \cos \times D(a)$$

Value includes two unidentified components, outcomes and decisions

- Need to find the worst case potential decision and outcome for cost and benefit

Statistical properties

Value is probably, approximately at least as high as baseline

$$V(\tilde{\pi}) - V(\hat{\pi}) \lesssim \text{Complexity}(\Pi)$$
 with probability at least $\gtrsim 1 - \alpha$

- Conservative approach gives a statistical safety guarantee with level lpha
- If policy class Π is complex, need more samples to avoid overfitting

Empirical optimality gap controlled by size of $\widehat{\mathcal{M}}_n(\alpha)$ and complexity of Π

$$V(\pi^*) - V(\widehat{\pi}) \lesssim \frac{u}{n} \sum_{i=1}^n \max_{a \in \mathcal{A}} \widehat{B}_{\alpha u}(a, X_i) - \widehat{B}_{\alpha \ell}(a, X_i) + \text{Complexity}(\Pi)$$

with probability at least $\gtrsim 1 - \alpha$

- Tradeoff between safety and optimality

References L

- Angrist, J. D. and Rokkanen, M. (2015). Wanna Get Away? Regression Discontinuity Estimation of Exam School Effects Away From the Cutoff. *Journal of the American Statistical Association*, 110(512):1331–1344.
- Athey, S. and Wager, S. (2021). Policy Learning With Observational Data. *Econometrica*, 89(1):133-161.
- Bertsimas, D., Brown, D. B., and Caramanis, C. (2011). Theory and applications of robust optimization. *SIAM Review*, 53(3):464–501.
- Cattaneo, M. D., Keele, L., Titiunik, R., and Vazquez-Bare, G. (2020). Extrapolating Treatment Effects in Multi-Cutoff Regression Discontinuity Designs. *Journal of the American Statistical Association*, 0(0):1-48.
- Cui, Y. (2021). Individualized decision making under partial identification: three perspectives, two optimality results, and one paradox. *Harvard Data Science Review*. Just accepted.
- Dell, M. and Querubin, P. (2018). Nation building through foreign intervention: evidence from discontinuities in military strategies. *Quarterly Journal of Economics*, 133(2):701-764.
- Greiner, D. J., Halen, R., Stubenberg, M., and Chistopher L. Griffen, J. (2020). Randomized control trial evaluation of the implementation of the psa-dmf system in dane county. Technical report, Access to Justice Lab, Harvard Law School.

References II

- Hahn, P. R., Murray, J. S., and Carvalho, C. M. (2020). Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects. *Bayesian Analysis*, pages 1-33.
- Imai, K., Jiang, Z., Greiner, D. J., Halen, R., and Shin, S. (2020). Experimental Evaluation of Computer-Assisted Human Decision-Making: Application to Pretrial Risk Assessment Instrument (with discussion). *Journal of the Royal Statistical Society, Series A (Statistics in Society)*, page Forthcoming. arxiv preprint https://arxiv.org/pdf/2012.02845.pdf.
- Kallus, N. and Zhou, A. (2021). Minimax-optimal policy learning under unobserved confounding. *Management Science*, 67(5):2870-2890.
- King, G. and Zeng, L. (2006). The dangers of extreme counterfactuals. *Political Analysis*, 14(2):131-159.
- Kitagawa, T. and Tetenov, A. (2018). Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice. *Econometrica*, 86(2):591-616.
- Künzel, S. R., Sekhon, J. S., Bickel, P. J., and Yu, B. (2019). Metalearners for estimating heterogeneous treatment effects using machine learning. *Proceedings of the National Academy of Sciences of the United States of America*, 116(10):4156-4165.
- Ludwig, J. and Miller, D. L. (2007). Does head start improve children's life chances? Evidence from a regression discontinuity design. *Quarterly Journal of Economics*, 122(1):159-208.

References III

- Manski, C. F. (2005). Social Choice with Partial Knowledge of Treatment Response. Princeton University Press.
- Morse, J. C. (2019). Blacklists, Market Enforcement, and the Global Regime to Combat Terrorist Financing, volume 73.
- Nie, X. and Wager, S. (2021). Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika*, 108(2):299–319.
- Pu, H. and Zhang, B. (2021). Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach. *Journal of the Royal Statistical Society Series B*, pages 1–28.
- Qian, M. and Murphy, S. A. (2011). Performance guarantees for individualized treatment rules. *The Annals of Statistics*, 39(2):1180-1210.
- Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. *Journal of the American Statistical Association*, 107(499):1106-1118.