Policy Evaluation with Staggered Adoption

Eli Ben-Michael

Harvard University

(Based on joint work with Avi Feller, Jesse Rothstein, and Elizabeth Stuart)

What is the impact of right-to-carry laws on violent crime?

Year of Right to Carry

- 1959 - 2014: 42 states enact right-to-carry

What is the impact of right-to-carry laws on violent crime?

1960 1970 1980

Year of Right to Carry

- 1959 2014: 42 states enact right-to-carry
- "More guns, less crime"? [Lott and Mustard, 1997]

What is the impact of right-to-carry laws on violent crime?

Year of Right to Carry

- 1959 2014: 42 states enact right-to-carry
- "More guns, less crime"? [Lott and Mustard, 1997]
- New research says no [Donohue et al., 2019]

Staggered adoption: Multiple units adopt treatment over time

Staggered adoption: Multiple units adopt treatment over time

Common approaches can fail: Little guidance when this happens

- Difference in Differences (DiD) typical regression approach can be invalid
- Synthetic Control Method (SCM) designed for single treated unit

Staggered adoption: Multiple units adopt treatment over time

Common approaches can fail: Little guidance when this happens

- Difference in Differences (DiD) typical regression approach can be invalid
- Synthetic Control Method (SCM) designed for single treated unit

A more design-based approach \rightarrow Policy Trial Emulation

Staggered adoption: Multiple units adopt treatment over time

Common approaches can fail: Little guidance when this happens

- Difference in Differences (DiD) typical regression approach can be invalid
- Synthetic Control Method (SCM) designed for single treated unit

A more design-based approach \rightarrow **Policy Trial Emulation**

Applied to SCM \rightarrow Partially Pooled SCM

- Modify optimization problem to target overall and state-specific fit
- Account for level differences with Intercept-Shifted SCM

Combining ideas from Epidemiology and Econometrics

Target Trial Emulation Design an obs. study like a RCT [Danaei et al., 2018; Dickerman et al., 2019] Combining ideas from Epidemiology and Econometrics

Target Trial Emulation Design an obs. study like a RCT [Danaei et al., 2018;

Dickerman et al., 2019]

Panel Data Methods Beyond two-way fixed effects [Abraham and Sun, 2018; Callaway and Sant'Anna, 2020] Combining ideas from Epidemiology and Econometrics

Right-to-carry Adopted Not Adopted

Causal contrasts

Units: i = 1, ..., N, J total treated units

Time: $t = 1, \ldots, T$, treatment times T_1, \ldots, T_J, ∞

Outcome: at event time k, Y_{i,T_i+k}

- Some assumptions to write down potential outcomes [Athey and Imbens, 2018; Imai and Kim, 2019]

Causal contrasts

Units: i = 1, ..., N, J total treated units

Time: $t = 1, \ldots, T$, treatment times T_1, \ldots, T_J, ∞

Outcome: at event time k, Y_{i,T_i+k}

- Some assumptions to write down potential outcomes [Athey and Imbens, 2018; Imai and Kim, 2019]

Basic building block:

$$\tau_{jk} = Y_{jT_j+k}(T_j) - \underbrace{Y_{jT_j+k}(\infty)}_{\sum \hat{\gamma}_{ij}Y_{iT_j+k}}$$

Single Target Trial

 $\mathsf{treat} = \left(\begin{array}{ccc} \checkmark & \checkmark & \checkmark \\ & \checkmark & \checkmark \\ & & \checkmark \\ & & \checkmark \end{array}\right)$

Causal contrasts

Units: i = 1, ..., N, J total treated units

Time: $t = 1, \ldots, T$, treatment times T_1, \ldots, T_J, ∞

Outcome: at event time k, Y_{i,T_i+k}

- Some assumptions to write down potential outcomes [Athey and Imbens, 2018; Imai and Kim, 2019]

Basic building block:

$$\tau_{jk} = Y_{jT_j+k}(T_j) - \underbrace{Y_{jT_j+k}(\infty)}_{\sum \hat{\gamma}_{ij}Y_{iT_j+k}}$$

Single Target Trial

 $\mathsf{treat} = \left(\begin{array}{ccc} \checkmark & \checkmark & \checkmark \\ & \checkmark & \checkmark \\ & & \checkmark \end{array}\right)$

Average at event time k:

$$\mathsf{ATT}_k = \frac{1}{J} \sum_{j=1}^J \tau_{jk}$$

Nested Target Trials

Single Target Trial Synthetic Controls

Towards Nested Target Trials Separate Synthetic Controls

Separate SCM

Partially Pooled SCM

Separate SCM

Pooled SCM

Pooled SCM

... but State Balance is worse

- Bad for state estimates

... but State Balance is worse

- Bad for state estimates

Also bad for the average!

- When DGP varies over time

- ... but State Balance is worse
 - Bad for state estimates

Also bad for the average!

- When DGP varies over time

Find weights that balance both Pooled Balance and State Balance

Partially Pooled SCM

Extensions

Intercept-Shifted SCM

Adjust for level differences by adding an intercept to the optimization problem

[Doudchenko and Imbens, 2017; Ferman and Pinto, 2018]

$$\hat{Y}^*_{j,T_j+k}(\infty) = \hat{lpha}_j + \sum_i \hat{\gamma}^*_{ij} Y_{i,T_j+k}$$

Intercept-Shifted SCM

Adjust for level differences by adding an intercept to the optimization problem

[Doudchenko and Imbens, 2017; Ferman and Pinto, 2018]

$$\hat{Y}^*_{j,T_j+k}(\infty) = \hat{lpha}_j + \sum_i \hat{\gamma}^*_{ij} Y_{i,T_j+k}$$

Solution: De-meaning by pre-treatment average $\vec{Y}_{i,T_i}^{\text{pre}}$

Intercept-Shifted SCM

Adjust for level differences by adding an intercept to the optimization problem

[Doudchenko and Imbens, 2017; Ferman and Pinto, 2018]

$$\hat{Y}^*_{j,T_j+k}(\infty) = \hat{\alpha}_j + \sum_i \hat{\gamma}^*_{ij} Y_{i,T_j+k}$$

Solution: De-meaning by pre-treatment average $\vec{Y}_{i,T_i}^{\text{pre}}$

Treatment effect estimate is weighted difference-in-differences

$$\hat{\tau}_{jk} = \left(Y_{j,T_j+k} - \overline{Y}_{j,T_j}^{\text{pre}}\right) - \sum_{i=1}^{N} \hat{\gamma}_{ij}^{*} \left(Y_{i,T_j+k} - \overline{Y}_{i,T_j}^{\text{pre}}\right)$$

- \rightarrow Uniform weights recover "stacked" DiD [Abraham and Sun, 2018]
- \rightarrow Similar in form to P-score weighted DiD [Abadie, 2005; Callaway and Sant'Anna, 2020]

Partially Pooled SCM

P. Pooled SCM w/Intercept

P. Pooled SCM w/Intercept

Often have additional covariates other than the main outcome

- E.g. poverty, unemployment, incarceration, and police staffing rates
- Demographics

Same trade-off between State Balance and Pooled Balance

We focus on fixed covariates, but time-varying covariates are similar

Intercept shift + covariates

Recap

Many policies we care about have staggered adoption

- Need to be careful when estimating effects!

A design-based approach helps clarify the issues

Applying these notions to SCM with staggered adoption

- Find weights that control State Balance and Pooled Balance
- Include an intercept to adjust for level differences
- Incorporate auxiliary covariates

Recap

Many policies we care about have staggered adoption

- Need to be careful when estimating effects!

A design-based approach helps clarify the issues

Applying these notions to SCM with staggered adoption

- Find weights that control State Balance and Pooled Balance
- Include an intercept to adjust for level differences
- Incorporate auxiliary covariates

Thank you!

Synthetic Controls with Staggered Adoption

A trial emulation approach for policy evaluations with group-level longitudinal data https://github.com/ebenmichael/augsynth

Appendix

The role of State Balance and Pooled Balance

Generalization of parallel trends: Linear Factor Model

$$Y_{it}(\infty) = \phi'_i \mu_t + \varepsilon_{it}$$

Error for ATT $\left|\widehat{\mathsf{ATT}}_{0} - \mathsf{ATT}_{0}\right| \leq \|\overline{\mu}\|_{2}\|\mathsf{Pooled Balance}\|_{2} + S\sqrt{\sum_{j=1}^{J}\left\|\mathsf{State Balance}_{j}\right\|_{2}^{2}} + \sqrt{\frac{\log NJ}{T}}$

Level of heterogeneity over time is important

- $\bar{\mu}$ is the average factor value \rightarrow importance of Pooled Balance
- S is the factor standard deviation \rightarrow importance of State Balance
- Special case: unit fixed effects, only Pooled Balance matters

Simulation study

Partially pooled SCM weights

Weights with intercept

In-time placebo (2 years)

In-time placebo (6 years)

Sensitivity to choice of ν

Dropping worst-fit units: P. Pooled SCM

Dropping worst-fit units: P. Pooled SCM + Intercept + Covariates

10/12

References I

- Abadie, A. (2005). Semiparametric difference-in-differences estimators. *The Review of Economic Studies*, 72(1):1-19.
- Abraham, S. and Sun, L. (2018). Estimating dynamic treatment effects in event studies with heterogeneous treatment effects.
- Athey, S. and Imbens, G. W. (2018). Design-based analysis in difference-in-differences settings with staggered adoption. Technical report, National Bureau of Economic Research.
- Callaway, B. and Sant'Anna, P. H. C. (2020). Difference-in-Differences With Multiple Time Periods.
- Danaei, G., García Rodríguez, L. A., Cantero, O. F., Logan, R. W., and Hernán, M. A. (2018). Electronic medical records can be used to emulate target trials of sustained treatment strategies. *Journal of Clinical Epidemiology*, 96:12-22.
- Dickerman, B. A., García-Albéniz, X., Logan, R. W., Denaxas, S., and Hernán, M. A. (2019). Avoidable flaws in observational analyses: an application to statins and cancer. *Nature Medicine*, 25(10):1601–1606.

References II

Donohue, J. J., Aneja, A., and Weber, K. D. (2019). Right-to-Carry Laws and Violent Crime: A Comprehensive Assessment Using Panel Data and a State-Level Synthetic Control Analysis. *Journal of Empirical Legal Studies*, 16(2):198-247.

- Doudchenko, N. and Imbens, G. W. (2017). Difference-In-Differences and Synthetic Control Methods: A Synthesis. *arxiv* 1610.07748.
- Ferman, B. and Pinto, C. (2018). Synthetic controls with imperfect pre-treatment fit.
- Goodman-Bacon, A. (2018). Difference-in-differences with variation in treatment timing. Technical report, National Bureau of Economic Research.
- Imai, K. and Kim, I. S. (2019). On the use of two-way fixed effects regression models for causal inference with panel data.
- Lott, J. R. and Mustard, D. B. (1997). CRIME, DETERRENCE, AND RIGHT-TO-CARRY CONCEALED HANDGUNS. *Journal of Legal Studies*, 26.