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What is the impact of right-to-carry laws on violent crime?

– 1959 – 2014: 42 states enact right-to-carry

– “More guns, less crime”?
[Lott and Mustard, 1997]

– New research says no
[Donohue et al., 2019]
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Estimating effects under staggered adoption

Staggered adoption: Multiple units adopt treatment over time

Common approaches can fail: Little guidance when this happens
– Difference in Differences (DiD) requires parallel trends assumption
– Synthetic Control Method (SCM) designed for single treated unit

Partially pooled SCM
– Modify optimization problem to target overall and state-specific fit
– Account for level differences with Intercept-Shifted SCM
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What do we want to estimate?

Units: i = 1, . . . ,N, J total treated units

Time: t = 1, . . . , T, treatment times T1, . . . , TJ,∞

Outcome: at event time k, Yi,Tj+k

– Some assumptions to write down potential outcomes
[Athey and Imbens, 2018; Imai and Kim, 2019]

treat =


✓ ✓ ✓

✓ ✓
✓



Basic building block:

τjk = YjTj+k(Tj) − YjTj+k(∞)︸ ︷︷ ︸∑
γ̂ijYiTj+k

Average at event time k:

ATTk =
1
J

J∑
j=1

τjk
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Separate
Synthetic Controls
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min
γ∈∆scm

∥∥∥∥∥∥YOHℓ −
∑
i ̸=OH

γiYiℓ

∥∥∥∥∥∥
2

2

+ penalty
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Partially Pooled SCM



min
Γ∈∆scm

1
J

J∑
j=1

∥∥State Balancej
∥∥2
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∥∥∥∥∥∥1J
J∑
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State Balancej
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min
Γ∈∆scm

∥Pooled Balance∥22 + penalty
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Pooled Balance is better!

... but State Balance is worse
- Bad for state estimates

Also bad for the average!
- When DGP varies over time

Find weights that balance both
Pooled Balance and State Balance
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min
Γ∈∆scm

ν ∥Pooled Balance∥22 +
1− ν

J
J∑

j=1

∥∥State Balancej
∥∥2
2 + penalty
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Heuristic for ν =
∥Pooled Balance∥2

1√
J
∑J

j=1
∥∥State Balancej

∥∥
2

fit with ν = 0
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Extensions



Intercept-Shifted SCM

Adjust for level differences by adding an intercept to the optimization problem
[Doudchenko and Imbens, 2017; Ferman and Pinto, 2018]

Ŷ∗j,Tj+k(∞) = α̂j +
∑
i
γ̂∗ijYi,Tj+k

Solution: De-meaning by pre-treatment average Ȳprei,Tj

Treatment effect estimate is weighted difference-in-differences

τ̂jk =
(
Yj,Tj+k − Ȳprej,Tj

)
−

N∑
i=1

γ̂∗
ij
(
Yi,Tj+k − Ȳprei,Tj

)

→ Uniform weights recover “stacked” DiD [Abraham and Sun, 2018]

→ Similar in form to P-score weighted DiD [Abadie, 2005; Callaway and Sant’Anna, 2020]
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Treatment effect estimate is weighted difference-in-differences

τ̂jk =
(
Yj,Tj+k − Ȳprej,Tj
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Incorporating auxiliary covariates

Often have additional covariates other than the main outcome
– E.g. poverty, unemployment, incarceration, and police staffing rates
– Demographics

Same trade-off between State Balance and Pooled Balance

We focus on fixed covariates, but time-varying covariates are similar
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Recap

This paper: Extend SCM to staggered adoption
– Find weights that control State Balance and Pooled Balance
– Include an intercept to adjust for level differences
– Incorporate auxiliary covariates

Thank you!
https://arxiv.org/abs/1912.03290

https://github.com/ebenmichael/augsynth
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Appendix



The role of State Balance and Pooled Balance
Generalization of parallel trends: Linear Factor Model

Yit(∞) = ϕ′
iµt + εit

Error for ATT

∣∣∣ÂTT0 − ATT0
∣∣∣ <
∼
∥µ̄∥2∥Pooled Balance∥2 + S

√√√√ J∑
j=1

∥∥State Balancej
∥∥2
2 +

√
logNJ

T

Level of heterogeneity over time is important
– µ̄ is the average factor value→ importance of Pooled Balance
– S is the factor standard deviation→ importance of State Balance
– Special case: unit fixed effects, only Pooled Balance matters
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Simulation study
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Partially pooled SCM weights
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Weights with intercept
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Sensitivity to choice of ν
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Dropping worst-fit units: P. Pooled SCM

9 / 12



Dropping worst-fit units: P. Pooled SCM + Intercept + Covariates
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