Synthetic Controls
with Staggered Adoption

Eli Ben-Michael
Harvard University
(joint work with Avi Feller and Jesse Rothstein)

ENAR 2021 Spring Meeting
March 2021
What is the impact of right-to-carry laws on violent crime?

- 1959 - 2014: 42 states enact right-to-carry
What is the impact of right-to-carry laws on violent crime?

- 1959 - 2014: 42 states enact right-to-carry

- "More guns, less crime"?
 [Lott and Mustard, 1997]
What is the impact of right-to-carry laws on violent crime?

- 1959 - 2014: 42 states enact right-to-carry

- “More guns, less crime”?
 [Lott and Mustard, 1997]

- New research says no
 [Donohue et al., 2019]
Estimating effects under staggered adoption

Staggered adoption: Multiple units adopt treatment over time
Estimating effects under staggered adoption

Staggered adoption: Multiple units adopt treatment over time

Common approaches can fail: Little guidance when this happens
- Difference in Differences (DiD) requires parallel trends assumption
- Synthetic Control Method (SCM) designed for single treated unit
Estimating effects under staggered adoption

Staggered adoption: Multiple units adopt treatment over time

Common approaches can fail: Little guidance when this happens
 - *Difference in Differences (DiD)* requires parallel trends assumption
 - *Synthetic Control Method (SCM)* designed for single treated unit

Partially pooled SCM
 - Modify optimization problem to target overall and state-specific fit
 - Account for level differences with *Intercept-Shifted SCM*
What do we want to estimate?

Units: \(i = 1, \ldots, N, J\) total treated units

Time: \(t = 1, \ldots, T,\) treatment times \(T_1, \ldots, T_J, \infty\)

Outcome: at event time \(k, Y_{i,T_j+k}\)

- Some assumptions to write down potential outcomes
 [Athey and Imbens, 2018; Imai and Kim, 2019]
What do we want to estimate?

Units: \(i = 1, \ldots, N, J \) total treated units

Time: \(t = 1, \ldots, T, \) treatment times \(T_1, \ldots, T_J, \infty \)

Outcome: at event time \(k, Y_{i, T_j+k} \)

- Some assumptions to write down potential outcomes
 [Athey and Imbens, 2018; Imai and Kim, 2019]

Basic building block:

\[
\tau_{jk} = Y_{jT_j+k}(T_j) - \left(\hat{\gamma}_{ij} Y_{iT_j+k} \right) \sum \hat{\gamma}_{ij} Y_{iT_j+k}
\]
What do we want to estimate?

Units: \(i = 1, \ldots, N, J \) total treated units

Time: \(t = 1, \ldots, T \), treatment times \(T_1, \ldots, T_J, \infty \)

Outcome: at event time \(k \), \(Y_{i, T_j+k} \)

- Some assumptions to write down potential outcomes
 [Athey and Imbens, 2018; Imai and Kim, 2019]

Basic building block:

\[
\tau_{jk} = Y_{jT_j+k}(T_j) - \frac{\sum \hat{\gamma}_{ij} Y_{iT_j+k}}{\sum \hat{\gamma}_{ij}}
\]

Average at event time \(k \):

\[
\text{ATT}_k = \frac{1}{J} \sum_{j=1}^{J} \tau_{jk}
\]
Separate Synthetic Controls
The graph shows the log violent crime rate over years relative to the right-to-carry law (2004). The data exhibits a trend with fluctuations, indicating changes in violent crime rates before and after the law's implementation. The vertical dashed line at 0 marks the year the law was enacted.
\[
\min_{\gamma \in \Delta^{\text{scm}}} \left\| Y_{\text{OH} \ell} - \sum_{i \neq \text{OH}} \gamma_i Y_{i \ell} \right\|_2^2 + \text{penalty}
\]
\[
\min_{\gamma \in \Delta^{scm}} \left\| Y_{OH} \ell - \sum_{i \neq OH} \gamma_i Y_{i\ell} \right\|^2 + \text{penalty}
\]
\[
\min_{\gamma \in \Delta^{scm}} \| \text{State Balance} \|_2^2 + \text{penalty}
\]
\[
\min_{\gamma \in \Delta^{scm}} \|\text{State Balance}\|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta_{scm}} \frac{1}{J} \sum_{j=1}^{J} \left\| \text{State Balance}_j \right\|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta_{\text{scm}}} \frac{1}{J} \sum_{j=1}^{J} \| \text{State Balance}_j \|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta^{scm}} \frac{1}{J} \sum_{j=1}^{J} \| \text{State Balance}_j \|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta_{scm}} \frac{1}{J} \sum_{j=1}^{J} \left\| \text{State Balance}_j \right\|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta_{\text{scm}}} \frac{1}{J} \sum_{j=1}^{J} \| \text{State Balance}_j \|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta_{\text{scm}}} \frac{1}{J} \sum_{j=1}^{J} \left\| \text{State Balance}_j \right\|_2^2 + \text{penalty}
\]
Separate SCM

\[
\min_{\Gamma \in \Delta_{\text{scm}}} \frac{1}{J} \sum_{j=1}^{J} \left\| \text{State Balance}_j \right\|_2^2 + \text{penalty}
\]
Partially Pooled SCM
\[
\min_{\Gamma \in \Delta_{scm}} \frac{1}{J} \sum_{j=1}^{J} \left\| \text{State Balance}_j \right\|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta_{scm}} \left\| \frac{1}{J} \sum_{j=1}^{J} \text{State Balance}_j \right\|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta_{\text{scm}}} \| \text{Pooled Balance} \|_2^2 + \text{penalty}
\]
Pooled Balance is better!

SCM pre-treatment imbalance

Pooled SCM vs. Separate SCM for different states.
Pooled Balance is better!

... but State Balance is worse
 - Bad for state estimates
Pooled Balance is better!

... but State Balance is worse
 - Bad for state estimates

Also bad for the average!
 - When DGP varies over time
Pooled Balance is better!

... but State Balance is worse
- Bad for state estimates

Also bad for the average!
- When DGP varies over time

Find weights that balance both Pooled Balance and State Balance
\[
\min_{\Gamma \in \Delta_{\text{scm}}} \nu \| \text{Pooled Balance} \|_2^2 + \frac{1 - \nu}{J} \sum_{j=1}^{J} \| \text{State Balance}_j \|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta^{scm}} \nu \|\text{Pooled Balance}\|_2^2 + \frac{1 - \nu}{J} \sum_{j=1}^{J} \|\text{State Balance}_j\|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta_{scm}} \nu \|\text{Pooled Balance}\|_2^2 + \frac{1 - \nu}{J} \sum_{j=1}^{J} \|\text{State Balance}_j\|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta^{\text{scm}}} \nu \|\text{Pooled Balance}\|_2^2 + \frac{1 - \nu}{J} \sum_{j=1}^{J} \|\text{State Balance}_j\|_2^2 + \text{penalty}
\]
\[
\min_{\Gamma \in \Delta_{\text{scm}}} \nu \|\text{Pooled Balance}\|_2^2 + \frac{1 - \nu}{J} \sum_{j=1}^{J} \|\text{State Balance}_j\|_2^2 + \text{penalty}
\]

Balance possibility frontier
Heuristic for $\nu = \frac{\|\text{Pooled Balance}\|_2}{\frac{1}{\sqrt{J}} \sum_{j=1}^{J} \|\text{State Balance}_j\|_2}$ fit with $\nu = 0$
Extensions
Intercept-Shifted SCM

Adjust for level differences by adding an intercept to the optimization problem

[Doudchenko and Imbens, 2017; Ferman and Pinto, 2018]

\[
\hat{Y}^*_{j,T_j+k}(\infty) = \hat{\alpha}_j + \sum_i \hat{\gamma}_{ij} Y_{i,T_j+k}
\]
Intercept-Shifted SCM

Adjust for level differences by adding an intercept to the optimization problem
[Doudchenko and Imbens, 2017; Ferman and Pinto, 2018]

\[
\hat{Y}_{j,T_j+k}(\infty) = \hat{\alpha}_j + \sum_i \hat{\gamma}_{ij} Y_{i,T_j+k}
\]

Solution: De-meaning by pre-treatment average \bar{Y}_{i,T_j}^{pre}
Intercept-Shifted SCM

Adjust for level differences by adding an intercept to the optimization problem
[Doudchenko and Imbens, 2017; Ferman and Pinto, 2018]

\[
\hat{Y}_{j,T_j+k}^*(\infty) = \hat{\alpha}_j + \sum_i \hat{\gamma}_{ij}^* Y_{i,T_j+k}
\]

Solution: De-meaning by pre-treatment average \(\bar{Y}_{i,T_j}^{\text{pre}}\)

Treatment effect estimate is \textbf{weighted difference-in-differences}

\[
\hat{\tau}_{jk} = (Y_{j,T_j+k} - \bar{Y}_{j,T_j}^{\text{pre}}) - \sum_{i=1}^{N} \hat{\gamma}_{ij}^* (Y_{i,T_j+k} - \bar{Y}_{i,T_j}^{\text{pre}})
\]

→ Uniform weights recover “stacked” DiD [Abraham and Sun, 2018]

→ Similar in form to P-score weighted DiD [Abadie, 2005; Callaway and Sant’Anna, 2020]
Balance possibility frontier

- Separate SCM
- Partially Pooled SCM
- Pooled SCM

DiD
Incorporating auxiliary covariates

Often have additional covariates other than the main outcome
- E.g. poverty, unemployment, incarceration, and police staffing rates
- Demographics

Same trade-off between State Balance and Pooled Balance

We focus on fixed covariates, but time-varying covariates are similar
Recap

This paper: Extend SCM to staggered adoption
- Find weights that control *State Balance* and *Pooled Balance*
- Include an *intercept* to adjust for level differences
- Incorporate auxiliary covariates
Recap

This paper: Extend SCM to staggered adoption
- Find weights that control State Balance and Pooled Balance
- Include an intercept to adjust for level differences
- Incorporate auxiliary covariates

Thank you!
https://arxiv.org/abs/1912.03290
https://github.com/ebenmichael/augsynth
Appendix
The role of **State Balance** and **Pooled Balance**

Generalization of parallel trends: Linear Factor Model

\[Y_{it}(\infty) = \phi_i' \mu_t + \varepsilon_{it} \]
The role of State Balance and Pooled Balance

Generalization of parallel trends: Linear Factor Model

\[Y_{it}(\infty) = \phi_i \mu_t + \varepsilon_{it} \]

Error for ATT

\[
\left| \hat{\text{ATT}}_0 - \text{ATT}_0 \right| \lesssim \| \bar{\mu} \|_2 \| \text{Pooled Balance} \|_2 + S \sqrt{\sum_{j=1}^{J} \| \text{State Balance}_j \|_2^2 + \frac{\sqrt{\log NJ}}{T}}
\]

Level of heterogeneity over time is important

- \(\bar{\mu} \) is the average factor value \(\rightarrow \) importance of Pooled Balance
- \(S \) is the factor standard deviation \(\rightarrow \) importance of State Balance
- Special case: unit fixed effects, only Pooled Balance matters
Simulation study

![Graphs showing the Mean Absolute Deviation: Individual Estimates for different models: Two-way Fixed Effects, Factor Model, and Autoregressive Model. The graphs compare different estimation methods: DiD, Factor Model, P. Pooled SCM w/Intercept, and Partially Pooled SCM.](image)
Partially pooled SCM weights
Weights with intercept

Donor State

Treated State
Sensitivity to choice of ν

The graph illustrates the sensitivity of ATT at 10th Year to the choice of ν. The black line represents the estimated ATT, and the shaded area indicates the uncertainty. The value of ν affects the ATT significantly, with a higher ν leading to a lower ATT. The red dot indicates a specific value of ν that is within the uncertainty range.
Dropping worst-fit units: P. Pooled SCM + Intercept + Covariates

