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The impact of teacher unions

- 1960 - 1987: 33 states grant collective
bargaining rights to teachers

- Long literature exploiting this timing
[e.g., Hoxby, 1996; Lovenheim, 2009]

- Impact on teacher salaries, student spending

- Paglayan [2019] estimates precise zero

- Uses ever-treated states

- We use all states
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Estimating effects under staggered adoption

Staggered adoption: Multiple units adopt treatment over time

Common approaches can fail: Little guidance when this happens
- Event study requires parallel trends assumption, rests heavily on linearity

- Synthetic Control Method (SCM) designed for single treated unit, poor fit for average

Our paper: One path forward
- Generalize SCM: Modify optimization problem to target overall and state-specific fit

- Combined approach: Combine event study modeling and SCM



Causal estimands

Units:i=1,..., N, J total treated units
Time:t=1,...,T,treatmenttimesT1,...,T;
Outcome: ateventtime k, Y 1,1«

- Some assumptions to write down potential outcomes
[Athey and Imbens, 2018; Imai and Kim, 2019]
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Causal estimands

Units:i=1,..., N, J total treated units
Time:t=1,...,T,treatmenttimesT1,...,T;
Outcome: ateventtime k, Y 1,1« treat =

- Some assumptions to write down potential outcomes
[Athey and Imbens, 2018; Imai and Kim, 2019]

Basic building block: Treatment effect for unit j Aggregate estimates:

Tik = Y1 4k(1) = Y1, 4£(0 1<
J J JJr() J J+() ATTk:jZT]k
And other weighted averages [Dube and Zipperer, 2015] j=1
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Effect on Per-Pupil Current Expenditures (log, 2010 $)
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Per-Pupil Expenditure
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Per-Pupil Expenditure
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Effect on Per-Pupil Expenditure
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Effect on Per-Pupil Expenditure
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Effect on Expenditures
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Pre-treatment fit and bias
Generalization of parallel trends: Linear Factor Model

Yit(0) = dipur + €t



Pre-treatment fit and bias
Generalization of parallel trends: Linear Factor Model

Yit(0) = @iy + it

Error for ATT:
_ J log N.J
ATTo — ATTo| < lllallAvg Balance|ls + 5, | 3 [State Balance; |2 + /=2
j=1

Level of heterogeneity over time is important
- pisthe average factor value — importance of Avg Balance
- Sisthe factor standard deviation — importance of State Balance

- Special case: unit fixed effects, only Avg Balance matters
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Paritally pooled SCM: Control both imbalances
Can get gains from minimizing Avg Balance but State Balance still matters

- ¢Por que no los dos?

Relative weighting defined by v:

mFin %||Avg Balance|2 + JL ZHState Balance; ||2+/\ZZI Yij)

7=1 =1
- Partial pooling in dual parameter space

Heursitic for v: fit with v = 0 then choose

ﬁ ||Avg Balance||,

\/§ Z}']=1 ||State Balance;||?

~

UV =

Pooled SCM = v =1



Pooled Imbalance
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Effect on Per-Pupil Expenditure
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Effect on Per-Pupil Expenditure

Partially Pooled SCM
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Weighted Event Study: FE + SCM

Combine outcome modeling and SCM weighting [Ben-Michael et al., 2018]
- Estimate unit fixed effects via pre-treatment average: ﬁp}ej

Craug pre pre
Yj,TjJrk( Y/J +Z"J(’T+k_y )

- Estimate SCM using residuals, equivalent to adding an intercept
[Doudchenko and Imbens, 2017; Ferman and Pinto, 2018]



Weighted Event Study: FE + SCM

Combine outcome modeling and SCM weighting [Ben-Michael et al., 2018]
- Estimate unit fixed effects via pre-treatment average: 1"

C-au rpre 7pre
0= 7+ 3 (Vs - 77

- Estimate SCM using residuals, equivalent to adding an intercept
[Doudchenko and Imbens, 2017; Ferman and Pinto, 2018]

Treatment effect estimate is weighted diff-in-diff
28 = (YViman =775 ) = 3 (Y = 7757
i=1

- Uniform weights recover direct estimate

- Connection to semiparametric DiD and conditional parallel trends
[Abadie, 2005; Callaway and Sant’Anna, 2018]
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Effect on Per-Pupil Expenditure

Weighted Event Study
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Random effects AR simulation: level of pooling matters more

Calibrated sim study: Random
Effects AR

- Fit random effects model
[Gelman and Hill, 2007]

3
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Recap and next steps

Extending SCM to staggered adoption
- Find weights that control State Balance and Avg Balance

- Combine SCM with Event Study Modeling to improve over both
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Recap and next steps

Extending SCM to staggered adoption
- Find weights that control State Balance and Avg Balance
- Combine SCM with Event Study Modeling to improve over both
Future: general approach for augmentation with staggered adoption
- Combining with other outcome models (e.g. matrix completion)

- Allowing for negative weights and include auxiliary covariates

Thank you!

ebenmichael.github.io


https://ebenmichael.github.io/
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DGP is FE Model: Weighted event study performs well
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Calibrated sim study: FE
- Fit FE model
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Event study is correct model
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DGP is Factor Model: Weighted event study dominates

Calibrated sim study: Factor
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- Fitgsynth [Xu,2017]
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