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What is the impact of teacher unionization on education spending?

– 1960 – 1987: 34 states pass mandatory
collective bargaining laws

– Impact of teachers unions unclear
↑ Increase expenditures by 12% [Hoxby, 1996]

↔ Or really no effect at all? [Paglayan, 2019]

– What should we believe?
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Estimating effects under staggered adoption

Staggered adoption: Multiple units adopt treatment over time

Common approaches can fail: Little guidance when this happens
– Difference in Differences (DiD) requires parallel trends assumption
– Synthetic Control Method (SCM) designed for single treated unit, poor fit for average

Partially pooled SCM
– Modify optimization problem to target overall and state-specific fit
– Account for level differences with Intercept-Shifted SCM
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What do we want to estimate?

Units: i = 1, . . . , N , J total treated units

Time: t = 1, . . . , T , treatment times T1, . . . , TJ ,∞

Outcome: at event time k, Yi,Tj+k

– Some assumptions to write down potential outcomes
[Athey and Imbens, 2018; Imai and Kim, 2019]

treat =


X X X

X X

X



Basic building block:

τjk = Yj,Tj+k(Tj) − Yj,Tj+k(∞)︸ ︷︷ ︸∑
γ̂ijYi,Tj+k

Average at event time k:

ATTk =
1

J

J∑
j=1

τjk
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Separate
SCM



min
γj∈∆scm

j

‖State Balancej‖22
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Moving Beyond
Separate SCM



min
Γ

1

J

J∑
j=1

‖State Balancej‖22
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min
Γ

∥∥∥∥∥∥ 1

J

J∑
j=1

State Balancej

∥∥∥∥∥∥
2

2
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min
Γ
‖Avg Balance‖22
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– Avg Balance is better

– but State Balance is worse.
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Which matters more?
Generalization of parallel trends: Linear Factor Model

Yit(∞) = φ′iµt + εit

Error for ATT

∣∣∣ÂTT0 − ATT0

∣∣∣ <
∼
‖µ̄‖2‖Avg Balance‖2 + S

√√√√ J∑
j=1

‖State Balancej‖22 +

√
logNJ

T

Level of heterogeneity over time is important
– µ̄ is the average factor value→ importance of Avg Balance
– S is the factor standard deviation→ importance of State Balance
– Special case: unit fixed effects, only Avg Balance matters
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Intercept Shifts



Intercept-Shifted SCM

Adjust for level differences by adding an intercept to the optimization problem
[Doudchenko and Imbens, 2017; Ferman and Pinto, 2018]

Ŷ ∗j,Tj+k(∞) = α̂j +
∑
i

γ̂∗ijYi,Tj+k

Solution: De-meaning by pre-treatment average Ȳ pre
i,Tj

Treatment effect estimate is weighted difference-in-differences

τ̂ aug
jk =

(
Yj,Tj+k − Ȳ pre

j,Tj

)
−

N∑
i=1

γ̂∗ij

(
Yi,Tj+k − Ȳ pre

i,Tj

)

→ Uniform weights recover “stacked” DiD [Abraham and Sun, 2018]

→ Similar in form to P-score weighted DiD [Abadie, 2005; Callaway and Sant’Anna, 2018]
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j,Tj

)
−

N∑
i=1

γ̂∗ij

(
Yi,Tj+k − Ȳ pre
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Recap

This paper: Extend SCM to staggered adoption
– Find weights that control State Balance and Avg Balance
– Include an intercept to adjust for level differences
– Under the hood: Dual shrinkage; connection to (generalized) IPW

Extras:
– Incorporating auxiliary covariates
– Weighted bootstrap confidence intervals

In progress:
– Extend to unbalanced panels
– Sensitivity analysis

Thank you!
https://arxiv.org/abs/1912.03290

https://github.com/ebenmichael/augsynth

19 / 19

https://arxiv.org/abs/1912.03290
https://github.com/ebenmichael/augsynth


Recap

This paper: Extend SCM to staggered adoption
– Find weights that control State Balance and Avg Balance
– Include an intercept to adjust for level differences
– Under the hood: Dual shrinkage; connection to (generalized) IPW

Extras:
– Incorporating auxiliary covariates
– Weighted bootstrap confidence intervals

In progress:
– Extend to unbalanced panels
– Sensitivity analysis

Thank you!
https://arxiv.org/abs/1912.03290

https://github.com/ebenmichael/augsynth

19 / 19

https://arxiv.org/abs/1912.03290
https://github.com/ebenmichael/augsynth


Recap

This paper: Extend SCM to staggered adoption
– Find weights that control State Balance and Avg Balance
– Include an intercept to adjust for level differences
– Under the hood: Dual shrinkage; connection to (generalized) IPW

Extras:
– Incorporating auxiliary covariates
– Weighted bootstrap confidence intervals

In progress:
– Extend to unbalanced panels
– Sensitivity analysis

Thank you!
https://arxiv.org/abs/1912.03290

https://github.com/ebenmichael/augsynth
19 / 19

https://arxiv.org/abs/1912.03290
https://github.com/ebenmichael/augsynth


Appendix



Random effects AR simulation: level of pooling really matters

Calibrated sim study: Random
Effects AR

– Fit random effects model
[Gelman and Hill, 2007]

Yit =

3∑
k=1

ρtkYi(t−k) + εit

ρt ∼ N(ρ̄,Σ)

– πi = logit
(
θ0 + θ1

∑1
k=−3 Yi(t−k)

)

1 / 6



DGP is FE Model: Intercept-Shifting + Partial Pooling performs well

Calibrated sim study: FE
– Fit FE model

Yit = uniti + timet + εit

– uniti ∼ N̂ormal
– πi = logit(θ0 + θ1 · uniti)

Event study is correct model

2 / 6



DGP is Factor Model: Intercept-Shifting + Partial Pooling does best

Calibrated sim study: Factor
– Fit gsynth [Xu, 2017]

Yit = uniti + timet + φ′iµt + εit

– {uniti, φi} ∼ M̂VN
– πi = logit(θ0 + θ1(uniti + φi1 + φi2))
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Heuristic for ν: fit with ν = 0 then choose

ν̂ =

1√
L
‖Avg Balance‖2√

1
J

∑J
j=1 ‖State Balancej‖22
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