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Disentangling differential impacts in an observational study

Estimating treatment effects for pre-defined subgroups
– Randomized trial→ stratified sampling

– Observational study→ different impacts or different covariate balance?

Overall effect ←→ Global Balance across the study
Subgroup effects ←→ Local Balance within subgroup
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Controlling for Local Balance to estimate subgroup effects

This paper: Balancing weights for subgroup analysis in observational studies

Find weights that control Local Balance
– Control Global Balance for stability and estimate overall effect

Dual relation to partially pooled propensity score estimation

Augment with outcomemodel
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Do letters of reccommendation affect URM applicants differently?

UCBerkeley pilot study on LORs in 2016
[Rothstein, 2017]

Worsen disparity for URMapplicants?

Take advantage of aspects of design
– Two reader evaluation system
– First reader score→ invitation for LOR
– Second reader has access to LOR

Large imbalance on income/test scores
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Accounting for compositional differences across applicants

Are differences due to composition?

Admissibility Index
– Predicting admission from 2015 data

Interaction between URM status and AI
– Second and third order interactions!
– Large sample sizes→ power

AI Range URM Number
<5% URM 11,832

Not URM 6,529
5% - 10% URM 3,106

Not URM 2,099
10% - 20% URM 2,876

Not URM 2,495
>20% URM 4,645

Not URM 6,959
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Balancing weights to estimate
sugroup effects



What we see
For applicant i = 1, . . . , n observe
– CovariatesXi ∈ X

– Treatment statusWi ∈ {0, 1} and outcome Yi ∈ R

– Group indicatorGi ∈ {1, . . . ,K}
- Interaction between URM, AI, reader 1 score, and college

Goal: Estimate the ATT

and subgroup CATT

τ = E[Y (1)− Y (0) |W = 1]

τg = E[Y (1)− Y (0) |W = 1, G = g]
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What we assume

Key Identifying assumption: Strong ignorability
Y (1), Y (0) ⊥W | X,G and e(X,G) ≡ P (W = 1 | X,G) < 1

– FlexibleML outcomemodels
[Künzel et al., 2019; Nie andWager, 2019; Hahn et al., 2020]

– Design-based IPWestimators: logistic regression with interactions
[Li et al., 2013; Lee et al., 2019; Dong et al., 2020; Yang et al., 2020]
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The importance of Local Balance for weighting
Estimation error depends on local imbalance in prognostic scorem0(Xi, g)

To simplify, assume linearitym0(x, g) = ηg · φ(x):

Errorg ≈ ‖ηg‖2 ‖Local Balanceg‖2 + σ‖γg‖2

Can generalize to non-parametric function classes, infinite dimensional bases
[Hirshberg et al., 2019; Hazlett, 2020]
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Optimizing for both Global Balance and Local Balance

min
γ

K∑
g=1

‖Local Balanceg‖22

+
λg
2
‖γg‖22

s.t. ∑
Gi=g

γi = n1g γi ≥ 0

Global Balance = 0
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Two views of the P-score imply different estimationmethods
Conditional probability of treatment
– Estimate ê(x, g)withMLE, then estimate
weights γ̂i = ê(Xi,Gi)

1−ê(Xi,Gi)

– Indirectly balances covariates
– Poor finite sample performance,
especially withmany covariates
[Athey et al., 2018]

Probability
of treatment

Weight units

Balance
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Two views of the P-score imply different estimationmethods
Balancing score [Rosenbaum and Rubin, 1983]

– Find weights γ̂ that balance covariates
[Hainmueller, 2011; Zubizarreta, 2015]
[Hirshberg et al., 2019; Hazlett, 2020]
[Imai and Ratkovic, 2013]

– Old history as raking and calibration in
survey sampling with non-response
[Deming and Stephan, 1940; Deville et al., 1993]

– Indirectly estimates the P-score
[Zhao and Percival, 2016]
[Wang and Zubizarreta, 2019]
[Chattopadhyay et al., 2020]
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Dual problem: multilevel P-score estimation
Fully interacted (truncated) linear model for treatment odds

e(Xi, Gi)

1− e(Xi, Gi)
∼
[
αg + βg

′φ(Xi)
]
+

Global Balance constraint→ partial pooling towards global model
λg
2
‖βg − µβ‖22

Primal weights are estimated treatment odds
γ̂i =

[
α̂j + β̂j

′φ(Xi)
]
+
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Differential impacts of letters of
recommendation



Acheiving good balance by design
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No discernable differences for URMs, some by AI
●

●
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Peak effect for middle tier URM applicants
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Augmentation diminishes differences
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Recap
Disentangle differential impacts from differential confounding
– Find weights that control Local Balance
– Control Global Balance to estimate the overall effect
– Dual relation to partially pooled IPW
– Augment with outcomemodel

Next Steps:
– Sensitivity analysis
– Heterogeneity in other observational study settings
– R package coming soon!

Thank you!
ebenmichael.github.io
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Appendix



Admissibility Index: a strong and simple prognostic
Engineering Letters and Science
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Heterogeneity across admissibility index
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Large imbalance on income, grades, and test scores
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Effective sample sizes
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Simulation study
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Global and local balance
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Good sample overlap for URMs, less so for non-URMs
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