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Analyzing multiple outcomes with synthetic controls
Synthetic Control Method (SCM)

– Re-weight control units (“synthetic control”) to closely
match treated unit’s pre-treatment outcomes

Often interested in effects on multiple outcomes
– Common SCM practice −→ run separate analyses
– Incompatible SCs and potential over-fitting

We propose to find a single SC by:
– Fitting on all outcomes simultaneously
– Fitting on an index/avg of outcomes

Combines info across outcomes to reduce the bias
Case study: Trejo et al. [2024] study on the 2014
Flint water crisis

– Math, reading, attendance, special needs

[Jardim et al., 2022]
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Notation and estimands

Units: i = 1, . . . ,N

Time: t = 1, . . . , T

Outcomes: k = 1, . . . ,K

kth outcome for unit i at time t: Yitk

First unit is treated at time T0

Potential outcomes Yitk(0), Yitk(1)

treat =


✓ ✓ ✓



Goal: Estimate effect on kth outcome for treated unit at time t ≥ T0:

τtk = Y1tk(1) − Y1tk(0)
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Impute the counterfactual via weighting

Synthetic control: weighted average of comparison units’ outcomes
[Abadie et al., 2010, 2015]

Ŷ1tk(0) =
∑
i∈ctrls

γ̂iYitk

Weights optimize pre-treatment fit

min
γ∈∆

Abadie et al. [2010]: low bias if excellent pre-treatment fit and a long pre-period
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Perfect fit on all outcomes −→ over-fitting?

Special Needs Student Attendance

Math Achievement Reading Achievement

2008 2010 2012 2014 2016 2018 2008 2010 2012 2014 2016 2018
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Very different weights across outcomes −→ inconsistent analyses?

Math Achievement

Reading Achievement

Special Needs

Student Attendance

Donor District

SCM Weight

0% 10% 20% 30%
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To adjudicate this, let’s take a deeper dive into the bias
Typically assume a linear factor model: Yit(0) =

∑R
r=1 ϕirµtr + εit

– µt are J latent factors vary over time, fixed over units
– ϕi are J latent factor loadings vary over units, fixed over time

can’t observe these

Challenge: Want to balance latent loadings, can only balance observed outcomes
– Only a noisy proxy

Bias for a single outcome

E[τ̂ − τ ] <
∼

1
signal × pre-treatment fit+ noise×

√
logN
T

Tradeoff between good pre-treatment fit and low approximation error
– Large # of time periods =⇒ low approximation error
– Large # of time periods =⇒ poor pre-treatment fit

Back to Flint: low # of time periods, might be overfitting + large approx error
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One set of weights for all outcomes
Tackle both problems by using a common set of weights for outcomes k = 1, . . . ,K

– Share information across outcomes −→more info on latent factor loadings

Option 1: concatenate the outcomes together
[contemporaneously proposed by Tian et al. [2023]]

min
γ∈∆

1
K

K∑
k=1

∥imbalancek∥22

Option 2: average the outcomes together

min
γ∈∆

∥∥∥∥∥1K
K∑

k=1
imbalancek

∥∥∥∥∥
2

2

Also include unit fixed effects (intercept-shifted SCM)
[Ferman and Pinto, 2021]
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A shared latent structure across outcomes
Link outcomes together via a common set of latent factor loadings
[in the paper: generalize this in terms of rank conditions]

Yitk(0) = αik + βtk +
R∑

r=1
ϕirµtkr + ϵitk

– Fixed effects αik & βtk + factors µkr differ by outcomes
– Factor loadings ϕi common across outcomes
– Flexibility through number of factors R

If R0 common factors and ∆R idiosyncratic factors per outcome, sufficient condition:
R0 + K×∆R < N− 1– Test scores [Duflo et al., 2011]

– Finer temporal resolution [Sun, EBM & Feller (2024)]

Gives a common set of oracle weights that balance the common latent factor loadings∑
controls

ϕiγ
∗
i = ϕtrt

+ add’l regularity condition that ∥γ∗∥1 is bounded
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How well can each method expect to do?

Quantify by comparing to oracle weights that balance latent factors
– SCM weights fit the outcome the best, so they must fit at least as well as the oracle weights

For separate SCM weights:
bias <

∼

noise
signal + noise×

√
logN
T

add’l bias from fixed effects like Nickell [1981] bias

– Approx error ↓ as T ↑
– Pre-treatment fit stays the same

[see also Ferman and Pinto, 2021]

For concatenated SCM weights:
bias <

∼

noise
signal +

noise√
K

×
√

logN
T

– Reduces approx error by a factor of 1√
K

For averaged SCM weights:

bias <
∼

1√
K
×

(
noise
signal

+ noise×
√

logN
T

) – Reduces approx error by a factor of 1√
K

– Improves pre-treatment fit by a factor of 1√
K
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A robust combined approach

Averaging might remove the signal→ average SCM has large bias

Idea: achieve good fit on both concatenated and average objectives
– can achieve better of the two bounds

Option 3: combined approach

min
γ∈∆

ν

∥∥∥∥∥1K
K∑

k=1
imbalancek

∥∥∥∥∥
2

2
+

1− ν

K
K∑

k=1
∥imbalancek∥22

– In principle, a correct ν∗ exists, but depends on the model
– Heuristic ν̂: ratio of avg and concatenated fit for concatenated SCM
– Vary ν as a sensitivity parameter
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The balance frontier

Concatenated Weights

Average Weights
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Inference on treatment effects

Adapt the conformal inference approach from Chernozhukov et al. [2021]

Operates as a randomization test of a sharp null H0 : (τ1, . . . , τK) = (τ10, . . . , τK0)

1. Enforce the sharp null by adjusting post-treatment outcomes Yitk − τ0k

2. Fit weights on all outcomes, incl. adjusted post-treatment outcomes
3. Compute a test statistic on the residuals
4. Randomly scramble pre-post treatment time indicator and compute p-value by comparing

observed test stat to the distribution

– Asymptotically correct size as T → ∞
– But requires us to specify joint null on all outcomes together
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Effects measured via different approaches

Special Needs Student Attendance

Math Achievement Reading Achievement
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Sensitivity to ν
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Recap
Synthetic controls with multiple outcomes

– Common practice: run a separate SCM analysis for each outcome
– Practical and theoretical pitfalls: potential for overfitting, inconsistent analyses

We propose to find a single set of weights
– Concatenate outcomes: ↓ overfitting
– Average outcomes: ↓ overfitting, ↑ pre-treatment fit
– Combined: more robust, advantages of both

Many open questions and next steps
– Tests for shared factor structure & diagnostics for averaging?
– Weaken shared factor structure, e.g. hierarchical models?
– Less demanding form of inference?

Thank you!
ebenmichael.github.io
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