Using Multiple Outcomes to Improve the Synthetic Control Method

Eli Ben-Michael

CMU

Joint work with Liyang Sun (UCL) and Avi Feller (UC Berkeley)

Synthetic Control Method (SCM)

 Re-weight control units ("synthetic control") to closely match treated unit's pre-treatment outcomes

Synthetic Control Method (SCM)

 Re-weight control units ("synthetic control") to closely match treated unit's pre-treatment outcomes

Often interested in effects on multiple outcomes

- Common SCM practice \longrightarrow run separate analyses
- Incompatible SCs and potential over-fitting

Synthetic Control Method (SCM)

 Re-weight control units ("synthetic control") to closely match treated unit's pre-treatment outcomes

Often interested in effects on multiple outcomes

- Common SCM practice \longrightarrow run separate analyses
- Incompatible SCs and potential over-fitting

[Jardim et al., 2022]

Synthetic Control Method (SCM)

 Re-weight control units ("synthetic control") to closely match treated unit's pre-treatment outcomes

Often interested in effects on multiple outcomes

- Common SCM practice \longrightarrow run separate analyses
- Incompatible SCs and potential over-fitting

We propose to find a single SC by:

- Fitting on all outcomes simultaneously
- Fitting on an index/avg of outcomes

Combines info across outcomes to reduce the bias

[Jardim et al., 2022]

Synthetic Control Method (SCM)

 Re-weight control units ("synthetic control") to closely match treated unit's pre-treatment outcomes

Often interested in effects on multiple outcomes

- Common SCM practice \longrightarrow run separate analyses
- Incompatible SCs and potential over-fitting

We propose to find a single SC by:

- Fitting on all outcomes simultaneously
- Fitting on an index/avg of outcomes

Combines info across outcomes to reduce the bias

Case study: Trejo et al. [2024] study on the 2014 Flint water crisis

- Math, reading, attendance, special needs

[Jardim et al., 2022]

Notation and estimands

Units:
$$i = 1, ..., N$$

Time:
$$t = 1, \dots, T$$

Outcomes:
$$k = 1, ..., K$$

$$k^{\text{th}}$$
 outcome for unit i at time t : Y_{itk}

First unit is treated at time T_0

Potential outcomes $Y_{itk}(0), Y_{itk}(1)$

$$\mathsf{treat} = \left(egin{array}{cccc} \checkmark & \checkmark & \checkmark \\ & & & \end{array} \right)$$

Notation and estimands

Units:
$$i = 1, \dots, N$$

Time:
$$t = 1, \dots, T$$

Outcomes:
$$k = 1, ..., K$$

$$k^{\text{th}}$$
 outcome for unit *i* at time *t*: Y_{itk}

First unit is treated at time T_0

Potential outcomes $Y_{itk}(0), Y_{itk}(1)$

Goal: Estimate effect on k^{th} outcome for treated unit at time $t \ge T_0$:

$$\tau_{tk} = Y_{1tk}(1) - Y_{1tk}(0)$$

$$\mathsf{treat} = \left(egin{array}{cccc} \checkmark & \checkmark & \checkmark \\ & & & \end{array} \right)$$

Synthetic control: weighted average of comparison units' outcomes

[Abadie et al., 2010, 2015]

$$\widehat{Y}_{1tk}(0) = \sum_{i \in \text{ctrls}} \hat{\gamma}_i Y_{itk}$$

Synthetic control: weighted average of comparison units' outcomes

[Abadie et al., 2010, 2015]

$$\widehat{Y}_{1tk}(0) = \sum_{i \in ctrls} \hat{\gamma}_i Y_{itk}$$

Weights optimize pre-treatment fit

$$\min_{\gamma \in \Delta} \sum_{t=1}^{T_0 - 1} \left(Y_{1tk} - \sum_{\text{controls}} \gamma_i Y_{itk} \right)^2$$

Synthetic control: weighted average of comparison units' outcomes

[Abadie et al., 2010, 2015]

$$\widehat{Y}_{1tk}(0) = \sum_{i \in \text{ctrls}} \hat{\gamma}_i Y_{itk}$$

Weights optimize pre-treatment fit

$$\min_{\gamma \in \Delta} \| \text{imbalance}_k \|_2^2$$

Synthetic control: weighted average of comparison units' outcomes

[Abadie et al., 2010, 2015]

$$\widehat{Y}_{1tk}(0) = \sum_{i \in \text{ctrls}} \widehat{\gamma}_i Y_{itk}$$

Weights optimize pre-treatment fit

$$\min_{x \in A} \| \text{imbalance}_k \|_2^2$$

Abadie et al. [2010]: low bias if excellent pre-treatment fit and a long pre-period

Perfect fit on all outcomes → over-fitting?

Very different weights across outcomes \longrightarrow inconsistent analyses?

Typically assume a linear factor model: $Y_{it}(0) = \sum_{r=1}^{R} \phi_{ir} \mu_{tr} + \varepsilon_{it}$

- μ_t are J latent factors vary over time, fixed over units
- ϕ_i are J latent factor loadings vary over units, fixed over time

can't observe these

Typically assume a linear factor model:
$$Y_{it}(0) = \sum_{r=1}^{R} \phi_{ir} \mu_{tr} + \varepsilon_{it}$$

- μ_t are J latent factors vary over time, fixed over units
- ϕ_i are J latent factor loadings vary over units, fixed over time

can't observe these

Challenge: Want to balance latent loadings, can only balance observed outcomes

Only a noisy proxy

Typically assume a linear factor model:
$$Y_{it}(0) = \sum_{r=1}^{R} \phi_{ir} \mu_{tr} + \varepsilon_{it}$$

- μ_t are J latent factors vary over time, fixed over units
- ϕ_i are J latent factor loadings vary over units, fixed over time

can't observe these

Challenge: Want to balance latent loadings, can only balance observed outcomes

- Only a noisy proxy

Bias for a single outcome

$$\mathbb{E}[\hat{\tau} - \tau] < \frac{1}{\text{signal}} \times \text{pre-treatment fit} + \text{noise} \times \sqrt{\frac{\log N}{T}}$$

Typically assume a linear factor model: $Y_{it}(0) = \sum_{r=1}^{R} \phi_{ir} \mu_{tr} + \varepsilon_{it}$

- μ_t are J latent factors vary over time, fixed over units
- ϕ_i are J latent factor loadings vary over units, fixed over time

can't observe these

Challenge: Want to balance latent loadings, can only balance observed outcomes

- Only a noisy proxy

Bias for a single outcome

$$\mathbb{E}[\hat{\tau} - \tau] < \frac{1}{\text{signal}} \times \text{pre-treatment fit} + \text{noise} \times \sqrt{\frac{\log N}{T}}$$

Tradeoff between good pre-treatment fit and low approximation error

- Large # of time periods ⇒ low approximation error
- Large # of time periods \Longrightarrow poor pre-treatment fit

Typically assume a linear factor model: $Y_{it}(0) = \sum_{r=1}^{R} \phi_{ir} \mu_{tr} + \varepsilon_{it}$

- μ_t are J latent factors vary over time, fixed over units
- ϕ_i are J latent factor loadings vary over units, fixed over time

can't observe these

Challenge: Want to balance latent loadings, can only balance observed outcomes

Only a noisy proxy

Bias for a single outcome

$$\mathbb{E}[\hat{\tau} - \tau] \lesssim \frac{1}{\text{signal}} \times \text{pre-treatment fit} + \text{noise} \times \sqrt{\frac{\log N}{T}}$$

Tradeoff between good pre-treatment fit and low approximation error

- Large # of time periods ⇒ low approximation error
- Large # of time periods ⇒ poor pre-treatment fit

Back to Flint: low # of time periods, might be overfitting + large approx error

Tackle both problems by using a common set of weights for outcomes $k = 1, \dots, K$

- Share information across outcomes \longrightarrow more info on latent factor loadings

Tackle both problems by using a common set of weights for outcomes $k=1,\ldots,K$

- Share information across outcomes \longrightarrow more info on latent factor loadings

Option 1: concatenate the outcomes together

[contemporaneously proposed by Tian et al. [2023]]

$$\min_{\gamma \in \Delta} \frac{1}{K} \sum_{k=1}^{K} \| \text{imbalance}_{k} \|_{2}^{2}$$

Tackle both problems by using a common set of weights for outcomes $k = 1, \dots, K$

Share information across outcomes → more info on latent factor loadings

Option 1: concatenate the outcomes together

[contemporaneously proposed by Tian et al. [2023]]

$$\min_{\gamma \in \Delta} \frac{1}{K} \sum_{k=1}^{K} \| \text{imbalance}_{k} \|_{2}^{2}$$

Option 2: average the outcomes together

$$\min_{\gamma \in \Delta} \left\| \frac{1}{K} \sum_{k=1}^{K} imbalance_{k} \right\|_{2}^{2}$$

Tackle both problems by using a common set of weights for outcomes k = 1, ..., K

- Share information across outcomes \longrightarrow more info on latent factor loadings

Option 1: concatenate the outcomes together

[contemporaneously proposed by Tian et al. [2023]]

$$\min_{\gamma \in \Delta} \frac{1}{K} \sum_{k=1}^{K} \| \text{imbalance}_{k} \|_{2}^{2}$$

Option 2: average the outcomes together

$$\min_{\gamma \in \Delta} \left\| \frac{1}{K} \sum_{k=1}^{K} imbalance_{k} \right\|_{2}^{2}$$

Also include unit fixed effects (intercept-shifted SCM)

[Ferman and Pinto, 2021]

A shared latent structure across outcomes Link outcomes together via a common set of latent factor loadings

[in the paper: generalize this in terms of rank conditions]

$$Y_{itk}(0) = \alpha_{ik} + \beta_{tk} + \sum_{r=1}^{R} \phi_{ir} \mu_{tkr} + \epsilon_{itk}$$
 - Fixed effects $\alpha_{ik} \& \beta_{tk}$ + factors μ_{kr} differ by outcomes

- Factor loadings ϕ_i common across outcomes
- Flexibility through number of factors R

A shared latent structure across outcomes

Link outcomes together via a common set of latent factor loadings

[in the paper: generalize this in terms of rank conditions]

$$Y_{itk}(0) = \alpha_{ik} + \beta_{tk} + \sum_{r=1}^{\kappa} \phi_{ir} \mu_{tkr} + \epsilon_{itk}$$

- Fixed effects α_{ik} & β_{tk} + factors μ_{kr} differ by outcomes
- Factor loadings ϕ_i common across outcomes
- Flexibility through number of factors R

If R_0 common factors and ΔR idiosyncratic factors per outcome, sufficient condition:

$$R_0 + K \times \Delta R < N-1$$

- Test scores [Duflo et al., 2011]
- Finer temporal resolution [Sun, EBM & Feller (2024)]

A shared latent structure across outcomes

Link outcomes together via a common set of latent factor loadings

[in the paper: generalize this in terms of rank conditions]

$$Y_{itk}(0) = \alpha_{ik} + \beta_{tk} + \sum_{r=1}^{\kappa} \phi_{ir} \mu_{tkr} + \epsilon_{itk}$$

- Fixed effects α_{ik} & β_{tk} + factors μ_{kr} differ by outcomes
- Factor loadings ϕ_i common across outcomes
- Flexibility through number of factors R

If R_0 common factors and ΔR idiosyncratic factors per outcome, sufficient condition:

$$R_0 + K \times \Delta R < N-1$$

- Test scores [Duflo et al., 2011]
- Finer temporal resolution [Sun, EBM & Feller (2024)]

Gives a common set of **oracle** weights that balance the common latent factor loadings

$$\sum_{\text{controls}} \phi_i \gamma_i^* = \phi_{\text{trt}}$$

⁺ add'l regularity condition that $\|\gamma^*\|_1$ is bounded

Quantify by comparing to **oracle** weights that balance latent factors

- SCM weights fit the outcome the best, so they must fit at least as well as the oracle weights

Quantify by comparing to oracle weights that balance latent factors

- SCM weights fit the outcome the best, so they must fit at least as well as the oracle weights

For separate SCM weights:

bias
$$\leq \frac{\text{noise}}{\text{signal}} + \text{noise} \times \sqrt{\frac{\log N}{T}}$$

add'I bias from fixed effects like Nickell [1981] bias

- Approx error \downarrow as $T \uparrow$
- Pre-treatment fit stays the same

[see also Ferman and Pinto, 2021]

Quantify by comparing to oracle weights that balance latent factors

- SCM weights fit the outcome the best, so they must fit at least as well as the oracle weights

For separate SCM weights:

bias
$$\leq \frac{\text{noise}}{\text{signal}} + \text{noise} \times \sqrt{\frac{\log N}{T}}$$

add'l bias from fixed effects like Nickell [1981] bias

For concatenated SCM weights:

$$bias < \frac{noise}{signal} + \frac{noise}{\sqrt{K}} \times \sqrt{\frac{\log N}{T}}$$

- Approx error \downarrow as $T \uparrow$
- Pre-treatment fit stays the same

[see also Ferman and Pinto, 2021]

– Reduces approx error by a factor of $\frac{1}{\sqrt{K}}$

Quantify by comparing to oracle weights that balance latent factors

- SCM weights fit the outcome the best, so they must fit at least as well as the oracle weights

For separate SCM weights:

bias
$$\leq \frac{\text{noise}}{\text{signal}} + \text{noise} \times \sqrt{\frac{\log N}{T}}$$

add'l bias from fixed effects like Nickell [1981] bias

For concatenated SCM weights:

bias
$$\leq \frac{\text{noise}}{\text{signal}} + \frac{\text{noise}}{\sqrt{K}} \times \sqrt{\frac{\log N}{T}}$$

For averaged SCM weights:

$$\mathsf{bias} < \frac{1}{\sqrt{K}} \times \left(\frac{ \underbrace{\mathsf{noise}}{\mathsf{signal}} + \mathsf{noise} \times \sqrt{\frac{\log N}{T}} \right)$$

- Approx error \downarrow as $T \uparrow$
- Pre-treatment fit stays the same
 [see also Ferman and Pinto, 2021]
- Reduces approx error by a factor of $\frac{1}{\sqrt{K}}$

- Reduces approx error by a factor of $\frac{1}{\sqrt{K}}$
- Improves pre-treatment fit by a factor of $\frac{1}{\sqrt{K}}$

A robust combined approach

Averaging might remove the signal \rightarrow average SCM has large bias

A robust combined approach

Averaging might remove the signal \rightarrow average SCM has large bias

Idea: achieve good fit on **both** concatenated and average objectives

- can achieve better of the two bounds

A robust combined approach

Averaging might remove the signal \rightarrow average SCM has large bias

Idea: achieve good fit on **both** concatenated and average objectives

- can achieve better of the two bounds

Option 3: combined approach

$$\min_{\gamma \in \Delta} \nu \left\| \frac{1}{K} \sum_{k=1}^{K} \mathsf{imbalance}_{k} \right\|_{2}^{2} + \frac{1 - \nu}{K} \sum_{k=1}^{K} \left\| \mathsf{imbalance}_{k} \right\|_{2}^{2}$$

- In principle, a correct ν^* exists, but depends on the model
- Heuristic $\hat{\nu}$: ratio of avg and concatenated fit for concatenated SCM
- Vary u as a sensitivity parameter

The balance frontier

Adapt the conformal inference approach from Chernozhukov et al. [2021]

Adapt the conformal inference approach from Chernozhukov et al. [2021]

Operates as a randomization test of a sharp null $H_0: (au_1, \dots, au_K) = (au_{10}, \dots, au_{K0})$

1. Enforce the sharp null by adjusting post-treatment outcomes $Y_{itk} - \tau_{0k}$

Adapt the conformal inference approach from Chernozhukov et al. [2021]

- 1. Enforce the sharp null by adjusting post-treatment outcomes $Y_{itk} \tau_{0k}$
- 2. Fit weights on all outcomes, incl. adjusted post-treatment outcomes

Adapt the conformal inference approach from Chernozhukov et al. [2021]

- 1. Enforce the sharp null by adjusting post-treatment outcomes $Y_{itk} au_{0k}$
- 2. Fit weights on all outcomes, incl. adjusted post-treatment outcomes
- 3. Compute a test statistic on the residuals

Adapt the conformal inference approach from Chernozhukov et al. [2021]

- 1. Enforce the sharp null by adjusting post-treatment outcomes $Y_{itk} \tau_{0k}$
- 2. Fit weights on all outcomes, incl. adjusted post-treatment outcomes
- 3. Compute a test statistic on the residuals
- 4. Randomly scramble pre-post treatment time indicator and compute *p*-value by comparing observed test stat to the distribution

Adapt the conformal inference approach from Chernozhukov et al. [2021]

- 1. Enforce the sharp null by adjusting post-treatment outcomes $Y_{itk} \tau_{0k}$
- 2. Fit weights on all outcomes, incl. adjusted post-treatment outcomes
- 3. Compute a test statistic on the residuals
- 4. Randomly scramble pre-post treatment time indicator and compute *p*-value by comparing observed test stat to the distribution
- Asymptotically correct size as $T \to \infty$
- But requires us to specify joint null on all outcomes together

Effects measured via different approaches

Sensitivity to ν

Synthetic controls with multiple outcomes

- Common practice: run a separate SCM analysis for each outcome
- Practical and theoretical pitfalls: potential for overfitting, inconsistent analyses

Synthetic controls with multiple outcomes

- Common practice: run a separate SCM analysis for each outcome
- Practical and theoretical pitfalls: potential for overfitting, inconsistent analyses

We propose to find a single set of weights

- Concatenate outcomes: ↓ overfitting
- Average outcomes: ↓ overfitting, ↑ pre-treatment fit
- Combined: more robust, advantages of both

Synthetic controls with multiple outcomes

- Common practice: run a separate SCM analysis for each outcome
- Practical and theoretical pitfalls: potential for overfitting, inconsistent analyses

We propose to find a single set of weights

- Concatenate outcomes: ↓ overfitting
- Average outcomes: ↓ overfitting, ↑ pre-treatment fit
- Combined: more robust, advantages of both

Many open questions and next steps

- Tests for shared factor structure & diagnostics for averaging?
- Weaken shared factor structure, e.g. hierarchical models?
- Less demanding form of inference?

Synthetic controls with multiple outcomes

- Common practice: run a separate SCM analysis for each outcome
- Practical and theoretical pitfalls: potential for overfitting, inconsistent analyses

We propose to find a single set of weights

- Concatenate outcomes: ↓ overfitting
- Average outcomes: ↓ overfitting, ↑ pre-treatment fit
- Combined: more robust, advantages of both

Many open questions and next steps

- Tests for shared factor structure & diagnostics for averaging?
- Weaken shared factor structure, e.g. hierarchical models?
- Less demanding form of inference?

Thank you!

ebenmichael.github.io

References I

- Abadie, A., Diamond, A., and Hainmueller, J. (2010). Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program. *Journal of the American Statistical Association*, 105(490):493-505.
- Abadie, A., Diamond, A., and Hainmueller, J. (2015). Comparative Politics and the Synthetic Control Method. *American Journal of Political Science*, 59(2):495-510.
- Chernozhukov, V., Wuthrich, K., and Zhu, Y. (2021). An exact and robust conformal inference method for counterfactual and synthetic controls. *Journal of the American Statistical Association*, 116(536):1849-1864.
- Duflo, E., Dupas, P., and Kremer, M. (2011). Peer effects, teacher incentives, and the impact of tracking: Evidence from a randomized evaluation in kenya. *American Economic Review*, 101(5):1739-74.
- Ferman, B. and Pinto, C. (2021). Synthetic controls with imperfect pre-treatment fit. *Quantitative Economics*.
- Jardim, E., Long, M. C., Plotnick, R., van Inwegen, E., Vigdor, J., and Wething, H. (2022). Minimum wage increases, wages, and low-wage employment: Evidence from seattle. *American Economic Journal: Economic Policy*, 14(2):263–314.

References II

- Nickell, S. (1981). Biases in dynamic models with fixed effects. *Econometrica: Journal of the Econometric Society*, pages 1417–1426.
- Tian, W., Lee, S., and Panchenko, V. (2023). Synthetic controls with multiple outcomes: Estimating the effects of non-pharmaceutical interventions in the covid-19 pandemic.
- Trejo, S., Yeomans-Maldonado, G., and Jacob, B. (2024). The effects of the flint water crisis on the educational outcomes of school-age children. *Science Advances*, 10(11):eadk4737.