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What the heck are we estimating!?

DiD/panel data: popular identification/estimation strategies

. . . but sometimes people get weird with it

Empirical researchers are doing X, is that ok?

3 sub-questions behind the main one
1. What is the estimator actually estimating, under the assumptions I think I’m making
2. What do we want to estimate?
3. Under what conditions are they the same?

Follow up: can we find an estimator that estimates what we want, under the
assumptions that we’re willing to make?
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A core result

For a 2x2 DiD

τ̂DiD11 = E[Ypost(1)− Ypost(0) | G = 1]− E[Ypost(1)− Ypost(0) | G = 0] (difference in post ATTs)
− (E[Ypre(1)− Ypre(0) | G = 1]− E[Ypre(1)− Ypre(0) | G = 0]) (difference in pre ATTs)

LS: No anticipation, only group 1 treated⇒ all ATTs are 0 except for post group 1

τ̂DiD11 = E[Ypost(1)− Ypost(0) | G = 1]

XZD: No anticipation, both groups treated⇒ pre-ATT is 0 for both groups
– insight: useful to define add’l layer of POs based on group Yt(g, z)

τ̂DiD11 = E[Ypost(1)− Ypost(0) | G = 1]− E[Ypost(1)− Ypost(0) | G = 0]
= E[Ypost(1,1)− Ypost(1,0) | G = 1]− E[Ypost(0,1)− Ypost(0,0) | G = 0]
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What do we want to estimate?

LS: In typical DiD setting, want a notion of average treatment effect on the treated

effect =
∑
times t

∑
ever trt groups g

weightgt × ATTg(t)

– For some aggregation strategy, what would be the average difference in outcomes under
treatment and control across all groups and times?

XZD: The causal interaction between group status and treatment

interaction effect = E[(Ypost(1,1)− Ypost(1,0))− (Ypost(0,1)− Ypost(0,0))]

– What would be the average difference in effects, if everyone was in group 1 vs. group 0?
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Are we estimating what we want under the assumptions we’re making?

LS: Under staggered adoption, the static and dynamic DiD estimators are estimating a
weird thing that is really just a description of heterogeneity

XZD: Under generalized DiD, the 2x2 DiD estimator is estimating a weird thing that is
really just a description of heterogeneity
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LS: Restrictions on heterogeneity
– Static DiD

- No time-varying effects within groups (Assumption 4), or
- Same calendar time effects across groups (Assumption 5)

– Dynamic DiD
- Same relative time effects across groups (Assumption 6)

– These assumptions are unpalatable (and non-nested)

XZD: Restrictions on heterogeneity
– Generalized parallel trends assumptions (Assumption 4)
– Parallel trends across both levels of both treatments (2×2 = 4 sets of constraints)
– What this buys us: conditioning on group doesn’t matter, and so description = causal
– Is this assumption palatable?

- Possible diagnostic with multiple periods and add’l (strong!) assumption of no effect carryover
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Is there a way to get us what we want without restricting heterogeneity?

LS: Review of heterogeneity-robust estimators
– Several options to address this in the literature
– And it makes a difference in applications!

XZD: Unclear
– Are there opportunities to use multiple periods?
– Are we just out of luck?
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XZD: Exclusion restriction and cannonical DiD

GDID setting recovers typical DiD setting under exclusion restriction (Assumption 5)

Ypost(0,1) = Ypost(0,0)

⇒ ATT for group 0 is 0, and they are “clean controls”

Are Bartik instruments/shift-share designs the other side of the coin?
– Groups defined by G have different level of exposure to Z
– e.g. the “China shock” [Autor et al., 2013, 2020]

– IV-style identification, but also fixed-effects/first differencing
[Goldsmith-Pinkham et al., 2020; Borusyak et al., 2022; Borusyak and Hull, 2023]

– Focus is on estimating effect of Z, not interaction, but does the GDID-style of analysis have
something to say about shift-share designs, and vice versa?
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Heterogeneity in impacts of “China shock” on presidential elections?
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LS: Miscelleneous notes

To what extent are these issues are a matter of degree?
– Discussion about omitted relative time period

- “Omitting a baseline period that does not appear for all units... places a much greater weight on
the effect homogeneity assumption” (pg 28)

- “Omitting pre-treatment relative time indicators that are too far from the start of treatment risks
placing greater weight on the effect homogeneity assumption” (pg 35)

Including never-treated units vs sometimes-treated units
– Paglayan and Hall & Yoder examples: evidence of pre-trends with sometimes-treated units
– Q in paper: does including never treated units make it worse?
– Regardless, implies we shouldn’t include sometimes-treated units

Strong form of parallel trends⇒ need to check for pre-trends across all pairs of groups?
– Omnibus diagnostic for strong parallel trends?
– Removing comparison pairs w/o parallel trends?
– But also pre-testing in problematic [Roth, 2018]
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Your turn: Q&A
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