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Balancing weights workflow
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Multi-level balancing weights
This talk: Extend balancing weights tomulti-level setting

Multilevel Matching
[Zubizarreta and Keele,

2017; Pimentel et al., 2018]
Hierarchical IPW

[Arpino and Mealli, 2011; Li et al., 2013]

Multilevel Weighting
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Multi-level selectionmechanisms

Cluster-level treatment assignment
[Zubizarreta and Keele, 2017; Pimentel et al., 2018]

Multi-site studies
– Ex: Obs. study simulation from real RCT for ACICworkshop

Based off of National Study of LearningMindsets [Yeager, 2017]
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The balance objective depends on the estimand
Two balancing goals:

Overall effect ←→ Balance globally across all schools
School-level effects ←→ Balance locally within each school

Really want to do both:

Balancingwithin school and globallyxy
Partial pooling inmultilevel IPW
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What we see
For student i in school j[i] observe:
– Student-level covariatesXi ∈ Rd and school-level covariates Vj[i] ∈ Rp

– Treatment status Ti, School indicator Si
– Outcome: Yi = Yi(1)Ti + Yi(0)(1− Ti)

Goal: Estimate the ATT

and school CATT

τ = E[Y (1)− Y (0) | T = 1]

τj = E[Y (1)− Y (0) | T = 1, S = j]
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What we assume

Key Identifying assumption: Strong ignorability
Y (1), Y (0) ⊥ T | X,V and π(X,V ) ≡ P (T = 1 | X,V ) < 1

Weighting control units by the odds of treatment:

E[Y (0) | T = 1] = E
[

π(X,V )

1− π(X,V )
Y | T = 0

]

7 / 14



What we assume

Key Identifying assumption: Strong ignorability
Y (1), Y (0) ⊥ T | X,V and π(X,V ) ≡ P (T = 1 | X,V ) < 1

Weighting control units by the odds of treatment:

E[Y (0) | T = 1] = E
[

π(X,V )

1− π(X,V )
Y | T = 0

]

7 / 14



Two views of the P-score imply different estimationmethods
Conditional probability of treatment
– Estimate π̂(Xi, Vi)withMLE, then
estimate weights γ̂i = π̂(Xi,Vj[i])

1−π̂(Xi,Vj[i])

– Indirectly balances covariates
– Poor finite sample performance,
especially withmany covariates
[Athey et al., 2018]
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Two views of the P-score imply different estimationmethods
Balancing score [Rosenbaum and Rubin, 1983]

– Find weights γ̂ that directly balance
covariates

– Indirectly estimates the P-score
– Old history as raking and calibration in
survey sampling with non-response
[Deming and Stephan, 1940; Deville et al., 1993]
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Balancing globally estimates the overall propensity score
Balancing weights:

Calibrated propensity score: Complete Pooling

[Hainmueller, 2011; Zubizarreta, 2015]

[Tan, 2017;Wang and Zubizarreta, 2018; Zhao, 2017]

Global Balance = 0

π(Xi, Vj[i]) = logit−1(α+ µβ
′Xi + η′Vj[i])

Linking the two: [Zhao and Percival, 2016]

γ̂i = exp(α̂+ µ̂β
′Xi + η̂′Vj[i]) =

π̂(Xi, Vj[i])

1− π̂(Xi, Vj[i])
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Balancing each school fits separate propensity scores
Withmultiple sites, can restrict to within school analysis, follow same procedure

But now exact balance is unlikely [Zhao and Percival, 2016;Wang and Zubizarreta, 2018]

Measuring balance: Propensity score:∗ No Pooling

σ2β
2J

J∑
j=1

‖School Balancej‖22 π(Xi, Vj[i]) = logit−1(αj + βj
′Xi)

βj ∼ N(0, σ2β)

Within school balance 6⇒ global balance because it is only approximate

∗Technically regularization
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Balancing both across andwithin schools is partial pooling

Measuring balance:

Hierarchical propensity score: (FIRC)

Global Balance = 0

π(Xi, Vj[i]) = logit−1(αj + βj
′Xi)

+

βj ∼ N
(
µβ + η′Vj , σ

2
β

)

σ2β
2J

J∑
j=1

‖School Balancej‖22
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Balancing both across andwithin schools is partial pooling

Measuring balance: Hierarchical propensity score: (FIRC)

Global Balance = 0 π(Xi, Vj[i]) = logit−1(αj + βj
′Xi)

+ βj ∼ N
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µβ + η′Vj , σ

2
β
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Partial pooling achieves good balance within school
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Partial pooling achieves nearly perfect balance across schools
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Summary
In multi-site observational studies wewant to balance:
– Globally across schools
– Locally within schools

But just balancing one does not balance the other
Solution: balance both
– Implicitly fits a multi-level propensity scoremodel (fixed intercept random coefficients)

Thanks!
ebenmichael@berkeley.edu

ebenmichael.github.io
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Standardmultilevel IPW achieves worse balance within school
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Standardmultilevel IPW achieves worse balance globally
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Estimating overall and school-specific effects
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Bias Correction
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Pooling ATT Estimates
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